A Model for Picture Structuring in
Man-Machine Dialogs

Karl Soop
Mora, Sweden, 2018-11-24
Version 4.0

Contents

1. Introduction
1.1 History
1.2 What is DIPRO?
1.3 What is DIPRO not?

2. Model Overview
2.1 Picture Structuring
2.2 Canonical Picture Forms
2.3 The Relational vs. the Object View
2.4 The Dialog
2.5 Functional Distribution
2.6 Response Logic
2.7 Picture Updates

3. Pictorial Relations
3.1 General Considerations
3.2 Discussion of Parameters
3.3 An Example Set
3.4 An Experimental 3D Subset

4. Application Building

5. The Theory of DIPRO
5.1 Picture Structure
5.2 The Event/Response Formalism
5.3 The Dialog

6. A Possible Hardware Implementation
6.1 Processor Layout
6.2 The Picture Space
6.3 The Memory Words
6.4 Relational Access Instructions
6.5 Tracing Operations
6.6 Update and Reference Requests
6.7 Dialog Cycle Execution

7. Conclusion

References

2 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

1. Introduction

A successful graphics application presents meaningful pictures to the user, and lets the user interact with the
pictures in a natural way. Presumably the most natural way is pointing, which is also recognised by modern
workstations (through mice, styli, or even the user's finger). The two operations: viewing and pointing, are
fundamental to the very nature of pictures. They correspond to innate, almost automatic, capabilities of the
human being, manifest early in life.

Can one base a formal computer-graphics model on these simple observations? Largely, yes, provided one
includes elements from other recognised areas of system design. Two such areas contribute to the Model
presented in this paper: structured and object-oriented design, with contributions from entity-relationship
modelling and basic set theory.

Viewing and pointing — the two fundamental facets of a graphics dialog — obviously correspond to
presentation ("output") and interaction ("input") in the system designer's world. These have traditionally
been treated separately in graphics support and standards. The present Model brings them together in an
object-based formalised dialog, including what might be called the "semantics" of interaction.

Evidently, picture and program structuring are closely related, and one can reap as much benefits from the
technique in graphics as in program design. Yet, relatively few graphics systems provide more than one
level of structure ('"segments"), although most windowing systems provide an analogous multi-level
structuring facility based on windows. The Model outlined in this paper offers indefinitely nested picture
structuring as a natural companion to program structuring.

1.1 History

The ideas that led to the present model started emerging in my mind during early graphics work with IBM
workstations, and found their first concrete form in the preparation of the Graphics Requirement Statement
in 1976, of which I was a co-author. Many of its principles, among those related to the present topic, were
adopted by the Hursley Laboratory, then the centre of graphics development in IBM, and found their way
into several subsequent products.

In the ensuing years I was involved in graphics at many levels, providing an opportunity to further develop
my original ideas. During my time as instructor of Graphics and class manager in IBM (ESRI, La Hulpe,
Belgium), they were extensively tested and hammered in demos, student exercises, and hands-on training,
using the tools I developed on top of the conceptual framework.

The latest result of these activities is a Dialog Processor Model, DIPRO. DIPRO can be regarded as a joint
working name for the collection of ideas, theories, methodologies, and implementations, that emerged
during these years, which are now further refined in the present package. Parts of DIPRO have been
presented in Soop [1982, 1986, 1988a, 1988b].

1.2 What is DIPRO?

1. It is a theory describing the mechanism of a graphics dialog between a human and a computer
(Section 5). Building on set theory, it is quite simple, even naive, and on the surface perhaps not very
new. But it has less trivial implications in terms of the functional split between a conventional
processor executing the "traditional" application code, and a Dialog Processor executing the pictorial
task of the application.

2. It is an implementation involving potentially a new hardware design for Dialog Processing (Section
6). The design evolves around a special-purpose associative memory, which was originally proposed
by Symonds [1968]. DIPRO then becomes a unique vehicle for exploiting the power of workstation
intelligence in a distributed processor network. It supports colour, high-resolution, and highly

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 3

interactive graphics. There are currently several working versions of DIPRO, emulated in software.
One is described in the form of a user's guide in this document (Section 3.3).

It is a new application building methodology, providing the means for ultra-fast development of small
to medium-sized applications with an interactive-graphics content (Section 4). The methodology is
tightly connected with the theory of DIPRO, and extends well-known principles, such as Object
Orientation and Structured Programming, into the new area of picture design.

1.3 What is DIPRO rnot?

1.

It does not involve a new graphics standard, although it complies with the CGRM standard [ISO
1990]. It can coexist with standards like GKS as far as providing popular sets of graphic primitives. In
this respect, though, DIPRO is closer to PHIGS [1985], since it is based on structured graphics. DIPRO
is, in fact, open-ended as to the choice of graphic primitives, be they two- or three-dimensional.

It is not yet another graphics function or class library. DIPRO is intended to be implemented as an
integral part of a laptop or a graphics workstation. The interface between a program and DIPRO is on
the same level as a VDI (Virtual Device Interface), but is much more economical. It does not sustain
the literally hundreds of function calls forced upon us by current standards and packages.

It is not a graphics application. Many graphics systems cater to specific application areas, such as
Business Graphics or CAD. DIPRO is neutral in this respect. (In fact, DIPRO is probably less suited to
Business Graphics, this being an application area with only trivial interactive contents.)

It is not yet another graphics editor. Paint tools and similar editors abound in the market and they all
produce virtually static pictures, mainly for presentation purposes. DIPRO caters to interactive
graphics. On the other hand, it is possible, and indeed a good idea, to develop a new graphics editor
with DIPRO.

DIPRO is Graphics. It does not explicitly include Image Processing, Voice, or other non-graphics
techniques, although it supports image-type primitives (’cell-array”, “pixel-map”) as part of a
structured picture, and may profitably coexist with these other techniques.

I would like to emphasise that most of the ideas in DIPRO are not new. They have been advanced and voiced
in one form or another in numerous talks and articles by many authors. Rather, it is the consolidation of
many concepts, bringing them to their logical limits, coupled with a few new ideas (especially in the
Event/Response area), that leads to the power and utter simplicity of DIPRO.

4 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

2. Model Overview

2.1 Picture Structuring

Structured pictures are the basis for most modern graphics products, due to the power and flexibility they
offer. This has been recognised by the PHIGS effort, which has led to an ISO standard [1985]. DIPRO also
exploits structured pictures, but in a simpler and more pervasive manner than in PHIGS. The following is a
résumé of the main ideas:

Looking first at structured programming, its foundation is no doubt the notion of a function or subprogram.
Every programmer appreciates, and uses almost without thinking, the ability to call one function from
another. The idea is that grouping program statements into a self-contained entity ensures a certain tightness
when it comes to control, scoping, and interface.

For the designer of pictures — that is, the joint visual information of an application — this same mechanism
is less obvious. Few graphics support systems give us the possibility to structure a picture like a program.
Nevertheless, most graphic pictures are too complex to be comfortably developed in an immediate and direct
fashion. An application designer would like to split the pictures into subpictures!, describe them separately,
and combine them in different ways. An example is shown in Fig. 2 (Section 2.6).

The analogy between subpictures and subprograms chiefly concerns structuring properties, although several
other similarities are explored below. On the other hand, one should note that from a logical point of view a
picture is not "executed" like a program. It therefore makes sense to regard the picture-handling system as at
least conceptually distinct from the processor that executes the application code (the Problem Processor). As
will be justified later, it is meaningful to characterise the former as a Dialog Processor.

When describing a subpicture, the designer makes use of basically three kinds of elements, or properties:

1. Graphic primitives, such as polygon and text, to be displayed in the subpicture. These properties
describe the What of the subpicture.

2. Graphic parameters, such as the position or colour of the subpicture. These properties describe
the How.

3. The links between the subpictures. These properties span the picture structure with a parent-child
relationship, and may be said, in a topological sense, to describe the Where.

As will be seen later (Section 2.4), the designer is concerned also with a fourth kind of property:
4. The response when the user points at the subpicture. This property describes the What If.

Graphic primitives and parameters? evidently correspond to primitive data and types in the programming
language, whereas the links correspond to function calls. Subpictures then become user-definable objects at
the same level as functions, and we look for a suitable format of description.

Although the fastest way to "describe" a picture is no doubt just to draw it on the screen (using a smart
picture editor), we are here concerned mainly with a formal description, a kind of source code, suitable as an
interface to a programming system. It is perfectly possible to describe a picture in words and other syntactic
elements, just like an algorithm is described by a programmer. Again, as in the case of an algorithm, one
seeks a format that is independent of the platform on which the application runs. It therefore makes sense to
call such a high-level source representation the canonical form of a subpicture (cf. the canonical form of
APL functions).

non

1Other terms that have been used are "nested segments", "graphic entities", and "structures".
2Some, such as colour, are often called "attributes".

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 5

2.2 Canonical Picture Forms

A pictorial canonical form should provide a syntactic representation of the properties (1-3, and perhaps 4)
listed above. The set of graphic primitives and parameters must be carefully designed; ideally it should be
general-purpose, but might in practice depend somewhat on the target application area (e.g. supporting 2D
or 3D). Its syntactic form is usually designed to match a familiar programming language.

At this point, we shall use only a few pictorial properties by way of example, and the syntax will be based on
simple keywords in some imaginary scripting language (for a full set, see Section 3). Let us consider the
example of a subpicture OSCAR displaying a tetragon and some text, positioned and coloured as to the
programmer's intent:

OSCAR
position 638,
colour red,
figure 0 10 7j6 -3j6 0,
text "hi there";

This example assumes a simple punctuation syntax, where 2D coordinates are expressed as xjy (akin to a
complex-number format), but an API using a different notation may be desirable, depending on the context.

If the subpicture should link to (contain, include) another subpicture FREDDY, defined elsewhere, one adds
the line:

link FREDDY,

We shall say that OSCAR in this example is a parent subpicture of FREDDY, and conversely that FREDDY is
a child subpicture of OSCAR.

An important aspect of the canonical form underlines its difference from that of an algorithm: the order
between the properties is of no importance. In other words, we assume that the picture is the same whether
the text is displayed before or after the figure (as is well known, this is far from always the case with
most technologies). Similarly, the fact that the subpicture will be positioned at <6, 8> remains valid for all
its contents, thus this line can be stated anywhere in the canonical form. The same is true for the colour; both
the tetragon and the text will be red. The canonical form is therefore declarative, analogous to a class or type
declaration in a programming language.

All parameters are local in the sense that they pertain to the subpicture where they are stated (cf. local
objects in functions or classes). Nevertheless, parameters must be expressed with respect to some reference
system. We shall assume, as do most advanced graphics support systems, that many parameters are
expressed relative to a higher-level subpicture in the structure. Thus the position <6, 8> is relative to that of
a parent subpicture (with a 1ink to OSCAR). Such "propagation" or "concatenation" of parameters is a
well-known mechanism in computer graphics. One may observe that all the usual parameters, such as
position, orientation, scale,window, colour, font, texture, as well as visibility and
detectability of the subpicture, are good candidates for similar propagation.

2.3 The Relational vs. the Object View

Another important aspect of the canonical form is that each property can be split into two parts: the fype
(keyword) of the primitive or parameter, and its value. An example is the line "colour red" above,
where the type is colour and the value is red. The value part can be expressed by constants, but since the
subpictures are not executed (i.e. not handled by the Problem Processor; Section 2.1), expressions must be
disallowed in canonical forms.

The duality of picture properties points to binary relations as a means of expressing the information. Each
graphic property type (primitive, parameter, or link) may then be considered an innate relation of the Dialog
Processor. One regards, for example, position as a binary relation between a subpicture (say, OSCAR)
and a value (say, 638). In a similar way, 1ink is a relation between OSCAR and FREDDY, or perhaps

6 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

between OSCAR and a set of several children. Other examples are given by Symonds [1968], Sharman
[1979], and Palermo [1979] (cf. also Schauer [1983]).

Following the relational view of the subpicture structure, the programmer may access a subpicture property
through a form of the relational join operation, here denoted by the symbol "#". Thus, given a suitable API,
the application program may set the colour property with the statement:

colour#0SCAR = yellow;

where yellow is an object of the appropriate type; and fefch it with:
C = colour#0SCAR;

Note that, since these statements are part of the application program (Problem Processor), expressions are, of
course, allowed and normally used in this case:

colour#0SCAR = findColour(1l,x);

An alternative, and largely equivalent, view of the type-value duality comes from regarding the subpicture as
an object. Each pictorial relation or type then becomes a property of the subpicture class, and its value
becomes part of the srate of the individual subpicture object. This view is the basis for the formal theory of
DIPRO (Section 5), whereas the relational view is more relevant to the implementation (Section 6).

2.4 The Dialog

The graphics model we have just sketched is entirely static. It permits arbitrarily complex pictures to be
built, using a canonical form analogous to that of an algorithm. The form may be accepted (compiled, etc.)
by a DIPRO implementation, but the resulting subpictures are established in a memory space other than that
of the Problem Processor. This workspace belongs to a Dialog Processor, and the only API we have with the
picture consists of a join operator (Section 2.3). We do not even have the means to start the Dialog Processor
in order to display our picture.

The aim of this and the following sections is to see how the picture begins to live; how it is displayed, how
the user interacts with it, and how it changes according to the programmer's intent.

The basic vehicle is a model of a graphics dialog between a user and a computer. We begin by considering
the user's view of the dialog, as outlined in the Introduction. These two steps are repeatedly cycled through
during an application session:

a. View the picture on a display device (which might also be hard-copying). In some cases the picture
changes without user interaction (animation).

b. Interact with the picture by pointing at it, usually after considering a number of choices (assuming an
interactive display device). Pointing takes place via some instrument (such as a mouse-driven cursor),
or with some devices directly by the user's finger.

This is translated into model terms by considering the corresponding mechanism inside the Dialog and
Problem Processors. Four phases are defined, which are repeatedly cycled through:

1. Presentation. A picture is presented on a display device. The model does not exclude several devices,
each one with its picture. The picture is generally composed of subpictures to any required depth.

2. Access (of an event). The dialog halts here pending the arrival of an event. Normally, in an interactive
application, the event is caused by the user pointing at the picture. But the model also allows for other
event sources, such as a keyboard, timer, an external process (e.g. a sensor), or even the application
program itself (posting), which may be perceived by the user as animation.

3. Correlation (of the event). Here the system attempts to determine what the user pointed at in the
picture. In a hierarchical structure, this information is uniquely given by a path through the structure,
consisting of the names of subpictures involved, including the primitive instance detected by the
pointing.

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 7

4. Response (to the event). Some part of the application is executed following the interaction. The code
to be invoked depends (a) on the previous Correlation, as well as (b) on the application state. Typically
the response consists of any traditional application processing, such as calculations and data-base
accesses. Of special interest is that the response also often modifies the picture to be presented in the
following phase 1.

This model is sufficiently general to encompass the dialogs in practically all graphics applications.

2.5 Functional Distribution

We note that the first three phases listed above are concerned only with the processing of pictures, and might
therefore be executed by the Dialog Processor. Only phase 4 utilises conventional program code, and must
therefore be executed by the Problem Processor. Consequently DIPRO assumes a split of execution support
into two communicating processors (Fig 1).

Dialog Q1 P Problem
Processor [22 Processor

L, Picture Space Program Space

Fig. 1 Functional Split

The Dialog Processor continually executes the first three phases of the dialog, displaying the pictures and
correlating the events with respect to them. It possesses a Picture Space, analogous to the program space of
the Problem Processor, where all subpictures belonging to the application are stored. The two processors are
asynchronous, but communicate through a queuing mechanism explained next.

2.6 Response Logic

In each cycle of the dialog, at the end of phase 3 (Section 2.4), the Dialog Processor must make the result of
its correlation available to the Problem Processor to allow the latter to respond. The format is a path,
composed of the names of subpictures detected in the interaction. For example, if the user pointed at line
segment number 5 in subpicture WHEEL2 in subpicture AUTO, which in its turn is placed in a DESIGN area
on the screen CONSTRUC, the path would consist of these names:

CONSTRUC DESIGN AUTO WHEEL2 5

where each name in the path denotes a parent subpicture of the next one (see Fig. 2). The path is
communicated to the Problem Processor through a queue, 01.

01 is used by the Response (phase 4) of the dialog cycle, so it may be called a response queue. Because of
its fundamental role in the model, it should preferably be accessed through a system variable, say RQ, in the
APL

It is convenient to define the queuing protocol in such a way that each reference to RQ by the Problem
Processor yields the next name in the Response Queue. This allows the application program to perform a
logical selection based on each path element in turn. Referring to the example above, when element
DESIGN is found, the function that handles all general manipulations of the design is invoked — one may

8 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

give this function the same name DESIGN (or some name derived from it) in order to automate its
invocation. DESIGN gains control, picks the next element through RQ, finds it is AUTO, and invokes the
function that handles the AUTO. Finally, AUTO calls WHEEL2 which executes the intended manipulation, for
instance erasing edge 5 in the wheel.

DESIGN Open ¥

Naw

Jnsmast
Dirawr

\

4
CONSTRUC AUTO

CONSTRUC
DESIGN IENU

AUTO RULER IONG¥es

T

WHEEL1 WHEELZ ENGINE .

) PEY ...

Fig. 2 Example of Program Structure = Picture Structure.
Each arc in the structure represents a parent-child relationship between two subpictures.

One may observe that this kind of logic in a well-structured application follows more or less the picture
structure. In general, there are several possible choices at each node. Thus, at node CONSTRUC the user may
point at either the DESIGN area or, say, at a MENU. Similarly, at node AUTO, the vehicle in question consists
of several parts other than WHEEL2. One speaks about a fan-out logic, where the invocation target depends,
at each node, upon the next element in RQ (but on no other element). An application wishing to use this logic
efficiently would contain a utility function to perform the fan-out (via e.g. a switch statement or a
polymorphic function call).

The queuing mechanism also yields an elegant solution to the synchronisation of the processors. After
having performed all responses, the Problem Processor must somehow signal the Dialog Processor to start a
new cycle. To do this, it just references the system variable RQ one more time. Queue Q1 is now empty, but
the Dialog Processor is nevertheless obliged to return a result. The only way it can satisfy the demand is to
re-execute the Presentation, Access, and Correlation phases.

2.7 Picture Updates

As previously noted, an important task for the Response phase is to update the subpictures (if it did not, the
user would always face the same picture on the screen). Since these objects are located in the picture space

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 9

of the Dialog Processor, the request is directed in the sense opposite to Q1. The communication can be
implemented through a second queue 02, the request queue.

For example, using the syntax suggested in Section 2.3, in order to update the position of subpicture OSCAR,
the program would execute the statement:

pos#0OSCAR = 57j6;
(or equivalent in the language used). We conclude that any reference or assignment to one of the subpicture
properties gives rise to traffic between the two processors.
The Problem Processor enqueues the update requests on 02, expressed as triplets:

<property, subpicture, value>
(in the example as <pos, OSCAR, 57j6>) and handles the required protocol. Q2 is then received by the
Dialog Processor, which goes on to service the request. Reference requests are expressed as pairs:

<property, subpicture>

and the resulting value (or set of values) is sent back to the Problem Processor on the same channel as used
for 02.

10 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

3. Pictorial Properties

3.1 General Considerations

Different implementations of DIPRO may support a different repertoire of subpicture properties. The choice
is intimately connected with the capabilities of the workstation, and may also depend to some extent upon
the intended application area. For example, due to different primitives (3D), one might expect a DIPRO
implementation for CAD not to have the same set as one aimed at cartography. Notwithstanding, there are
certain properties that are more important than others, and without which it would be difficult to imagine
any implementation of DIPRO.

For example, the fact that a subpicture S is part of a hierarchical structure is embodied in the link
property (Section 2.2). The 1ink property is therefore mandatory in any DIPRO implementation. If S has
the property 1ink T, then T is a child of S, and is presented and correlated as part of S; conversely S is a
parent of T. Note that nothing prevents other subpictures to have links to T, the net effect being that several
instances of T are shown during the presentation phase. The only restriction is that loops must be avoided in
the structure (which becomes effectively a "re-entrant tree" or an "acyclic, directed graph").

As another example, consider the parameter colour blue. This property would typically specify the
colour to be used for primitives in the subpicture, at least as a default, or possibly in some other sense to be
precisely defined by the implementation.

The role of colour and 1ink as properties is not difficult to grasp, but the situation is less obvious for
primitives. But since primitives can be regarded as subpictures at the lowest level, i.e. as leaves of the
structural tree (cf. Fig. 2), one may regard them as special links. Thus a primitive property simply states that
the subpicture contains an instance of this primitive, establishing a link with what is often implemented as a
generator in the hardware. For example, if the hardware supports circles, then the Dialog Processor would
provide a property circle, which may be used by an update request to "link" S to the circle generator:

circle#S = 35;
The effect would be that a circle of radius 35 is shown as part of S.

In summary, subpicture properties are used uniformly to express links, primitives, and parameters.

3.2 Discussion of Parameters

A parameter may affect the geometry (spatial appearance) or the style (cosmetic appearance), or perhaps
some other aspect, of the subpicture for which it is specified. Apart from the local value, specified in a
subpicture S, one may speak about the effective value of a parameter, meaning the value actually used when
an instance of S is presented or correlated (cf. Section 2.4).

3.2.1 Parameter Propagation

colour is an example of a parameter that affects the style of the subpicture. Since a subpicture in one sense
"contains” its children, the colour would be expected to somehow propagate downwards in the structure.
Thus, if S has links to T and U, one would expect T and U to be red if S is. In this case, the effective colour
of the children T and U is red, even though no local colour was specified for the latter. What happens if T
also has a local colour parameter, specifying yellow? If the DIPRO implementation supports colour
blending, T may be shown in orange. This is an example of parameter combination. One can say that the
colour parameter in this example is relative, as opposed to an absolute parameter, which would override the
value propagated from the parent without combining with it. Note that this distinction is not important, as an
absolute parameter may be regarded as a special case of a relative one (where the combination ignores the
propagated value).

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 11

3.2.2 Geometric Parameters

Geometric parameters almost invariably propagate by combination ("concatenated transformations") and are
therefore relative in systems that support structured graphics. Thus, if the local position of a subpicture S is
given by a parameter pos, all its children are translated (shifted) along with S whenever its pos is updated.
We may say that position combines under vector addition.

In some systems common geometric parameters are given jointly by transformation matrices (often using
homogenous coordinates); however, in the examples in the following section, they are explicitly and
independently stated as position, orientation, and scaling. The reason is that we would like to show an API
that caters to a more casual application developer. After all, a matrix is a highly user-hostile format of
specification. Orientation (rotation) and scaling will then propagate and combine under vector and scalar
multiplication, respectively.

3.2.3 Windowing

A window parameter is of crucial importance in any graphics system. Windows may be used for clipping or
for mapping (onto viewports); in the example below, only the former technique is provided, since the other
geometric parameters may be used for mapping. Moreover, in a hierarchical structure, an explicit mapping
parameter (viewport) is not needed, since a window specified for a parent subpicture automatically acts
as a viewport in its child. Finally, viewports, in the strict sense as a physical area on the display surface, only
occur at the highest level of the hierarchy. In DIPRO the root subpicture of the structure represents the
physical device itself, so the Dialog Processor will map its window directly onto the application window
(client area or canvas).

In general, window is therefore a parameter that limits the subpicture to within a given (usually but not
necessarily rectangular) area, causing material outside the window frame to be clipped. The window of a
subpicture is itself clipped by the effective window of its parent. Thus, the parameter is relative and
combines under set intersection.

Properties may be provided to facilitate interaction with the picture, with but little effect on the presentation.
An example in the following section is locate, a primitive embodying the locator mode of "graphic input"
in some current standards. By default the 1ocate primitive is not shown on presentation, but covers the
effective window with invisible pixels that the user can point at. Similarly, a pad of function keys may be
regarded as a (very coarse) pixel matrix that can be pointed at, even though it is not physically located on the
display screen.

3.2.4 Dynamic Parameters

In many graphics systems visibility and detectability are parameters (or "attributes") that can be
set on or off. The example in the next section expands the idea of an on/off state to handle any state named
by the programmer. The state itself is then set by a third parameter state, which can be said to embody the
actual object state. This provides a very powerful and flexible mechanism to regulate the dynamics of a
picture based on state networking, a well-known discipline in application development (Section 4).

To this group of dynamic parameters, one might add hiliting, used to emphasise the presentation of a
subpicture (with states selected, unavailable, normal, etc.).

3.3 An Example Set

This section lists a full set of pictorial properties by way of example. The list serves partly to concretise the
ideas developed so far, partly as a feasibility check on the proposed implementation (Section 6). At the same
time, this section may serve as a User's Manual for the software-emulated implementation provided as a
companion to this document. Unless stated otherwise, to point in this example means to click with the left
mouse-button.

12 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

The Dialog Processor, described in the example, supports general-purpose, medium-level, two-dimensional,
interactive, colour graphics. In addition, an experimental 3D extension is included (Section 3.4).

3.3.1 Syntax

Subpicture properties are specified in a canonical form (Section 2.2). Each statement is headed by the name
of the subpicture. One or more properties may be given, separated by commas. The statement ends with a
semicolon. In other words, a statement is:

name property, ...;
where name designates a subpicture, and an ellipsis (...) is used here and later to denote indefinite repetition
of the previous syntactic unit. If the subpicture is undefined (i.e. name has never been used), it is
automatically created.?
A property is:

lypename value

The effect is to set the property typename to value in the subpicture name. The typename is a member of a
set of implementation-defined keywords. The value may be composite, consisting of several components
(see examples in the following sections). It may also be omitted (see below).
Setting a property that is already set in the subpicture replaces it; for example, in:

oscar colour red, colour green;
the effect will be the same as:

oscar colour green;

However, for links and primitives, you may add the property without replacement with a ‘+’ syntax.* Thus:
oscar link fred, +link beata;

has the same effect as:
oscar link fred beata;

and
oscar +box 6;

will add the box to any other boxes already present in oscar.

If value is the reserved word nil, the effect is to remove the property from the subpicture (if present).

If value is omitted, the property is not set but queried, causing DIPRO to return the value of the property. If
the property has not been set in the subpicture, nil is returned.

The following syntax is used here and in subsequent sections:

. name is an unquoted character string forming a bona-fide identifier in the usual programming sense. It
usually denotes a programmer-invented subpicture or state name.
Examples: oscar, R1234, a B.

. point is a 2D coordinate, expressed as xjy (it may be regarded as a complex number with x the real
and y the imaginary component), or only as x, in which case yis 0 unless stated otherwise.
Examples: 538, -1j1, 0j-1, 03j-1.5537, 4, 4.8.

. string is a character string enclosed in double-quotes. Examples: "hi there", .

3In a theoretical sense subpictures are never created or destroyed, only their properties are (Section 5.1.5).

4Without this rule, the programmer would have to repeat all previous links, say, just to add a new link. The cost is that
an additional syntactic element is needed to remove a link (Section 3.3.7).

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 13

. colcode is either a triplet of integers forming a colour code, or a mnemonic. The integers denote in
order the intensities of the red, green, and blue components in the range [0, 255]. The following
mnemonics are used as a short-cut for the most common colcodes:

black darkgrey palegrey
red darkred palered
green darkgreen palegreen
blue darkblue paleblue
pink darkpink palepink
cyan darkcyan palecyan
yvellow darkyellow paleyellow
white

Examples with mnemonics:

255 0 255 (pink)

255 255 255 (white)

0 0 0 (black)

0 105 8 (sortof grey-green hue without a mnemonic)

In the following the syntax of each supported property type is stated, then a general description in terms of
its effect on the subpicture S for which it is specified, followed by any dependencies on other properties.
The term local pertains to a value specified in S itself, and effective to the value actually used in the
presentation of (an instance of) S.

3.3.2 Primitives

Primitives are described in terms of how they are presented and how they react on interaction. The latter
includes what the primitive contributes to the Response Queue (section 2.6) when the user points at it. In
some cases, the conditions for detecting a primitive by pointing are also given.

|figure pointlist / ... |

where pointlist is a list of points separated by blanks.

Each pointlist is presented as an open polygon passing through the specified points, expressed in the
local system. A "polygon" of one point is presented as a dot.

On pointing, a list of 0-based indices is returned, identifying the detected polygon edges (note that it is
possible to point simultaneously at several edges).

Examples: Comments:

figure 333 43-10 035 333 Triangle

figure 10.8 Dot on x-axis

figure 0 -10 / 0 335 / 0 3j-5.1 Y-shaped figure
figure 10/0/-10 Pin-point figure (3 dots)

Remarks: This is the traditional line-set primitive ("polyline").

|box point ... |

Presented as one or more rectangular boxes. Each box is centred at the local origin, is parallel to the
local axes, and has a vertex at the specified point. If the y component of point is omitted, the x
component is assumed (the box is square).

On pointing, the interior of the box is detected, and the integer pair 0 1 is returned.

14 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

Examples: Comments:

box 3j4 Box through point <3, 4> (will be 6 wide, 8 high)
box -3j4 idem

box 23j4 535 10j9.7 3 concentric boxes

box 10 Square

box 10j10 idem

box 1030 Very flat box (straight line)

box 2j10 10j2 Cross made of 2 boxes

Remarks: This and the following primitive epitomise a large class of special-purpose primitives that
are often included in implementations. As defined here, the primitive must be centred by the pos
parameter (below). The composite value returned on pointing is compatible with the 3D case (Section
3.4.1).

lcircle point ... |

Presented as one or more concentric circular arcs. Each arc extends anti-clockwise from the local
positive x-axis to the specified point, and is centred at the local origin. Ellipses may be produced by
rectangular scaling (see the scale parameter below). If a point on the positive x-axis is specified, a
whole circle is presented.

On pointing, the perimeter of the arc is detected, and its coordinate in the local system is returned, but
normalised to a unit vector. This detect element can therefore be used as a direction vector.

Examples: Comments:

circle 2 Circle of radius 2

circle -2 -3 -4 Half-circles of radii 2, 3, and 4
circle 103j10 Circle arc extending 45 degrees
circle 0j-1 Unit three-quarter circle

ltext point string . .. |

where the point is optional.

Presented as a paragraph of text with the top-left corner at the specified point, expressed in the local
system (default is the origin). Each specified string forms one row in the paragraph. The text is parallel
to the canvas.

On pointing, the (0-based) row and column indices of the detected character, counted from top left, are

returned.

Examples: Comments:

text "Please state vicar's name here:"

text "Amanita" "Mycena" "Lepiota" 3-row paragraph
text 5j5 "Amanita" Text shifted by <5, 5>

|menu point string . .. |

Behaves like text on presentation, except that if the first (or only) word in a row is the effective
state name (see 3.3.5), the row is highlighted in a complementary background colour.

The main difference from text lies in the behaviour on interaction: on pointing at a menu the
detected row is returned literally as a character string.

Examples: Comments:
menu "truite" "gigot" "fromage" "sorbet" Four-item menu

menu “Extend forward” Highlighted in state Extend

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 15

Remarks: The interactive property of menu makes it useful for menu work. The Response program
(cf. Section 2.6) may use the first (or only) word of the returned string as a keyword to fan out to
detailed responses. Highlighting is useful to signal that a given menu choice is currently active. It is
sufficient then to set the state parameter of the subpicture (sect. 3.3.5).

Implementation note: Through a DIPRO utility, the application may specify that a menu in a given
subpicture be activated as a popup by right-button mouse clicks.

larray collist / ... |

where collistis a list of colcodes.

Presented as an array of rectangular, coloured tiles, scaled to fill the local window. Each tile has the
colour defined by the corresponding code. The code none causes the tile to be omitted; i.e. a hole
appears in the array. The rows of the array are separated by a slash.

On pointing, the (0-based) column and row indices of the detected tile are returned, counted from the
bottom-left corner.

Examples: Comments:
array blue white red French flag filling local window

array blue white red / white red blue / red blue white
idem, but chequered

array none green / green green green / none green
Green cross

array 255 126 0 white blue / green
Two-row array starting with orange

Remarks: An extension would allow the specification of a rectangle, onto which the array is mapped.

| image point string |

where string is the name of an image that was earlier loaded (with a DIPRO utility), and the point is
optional.

Presents the image, centred at point, expressed in the local system (default is the origin). The image is
parallel to the canvas.

On pointing, the (0-based) indices of the detected pixel are returned, counted from the bottom-left

corner.
Examples: Comments:
image "score" Shows the image in the previously loaded file score.bmp

image 7j6.5 "score" Image centered at <7, 6.5>

|Llocate grid |

where grid is a point whose components are truncated to integers.

Presented as (1) the rectangle that forms the local window frame, and (2) a coordinate grid in the
frame. The grid value specifies the number of grid lines to be shown in the x and y directions. The grid
is adjusted to pass through the local origin. If grid is specified as 0, only the frame is shown. If grid is
negative, the primitive is not shown, and only used for pointing.

On pointing, the inside of the frame is detected, and its coordinate is returned, expressed in the local

system.
Examples: Comments:
locate -1 Invisible drawing area

locate 5j4 Both frame and grid shown (5 by 4 lines)

16 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

locate 5 idem, but no horizontal lines
locate 1j1 Frame with coordinate axes
locate 0 Only frame

Remarks: This primitive is useful to provide direct interaction with the pixels in a window, e.g. to let
the user point out a location.

|keyin string mode |

where mode is optional.

Shown on presentation only if mode is the mnemonic frame. The local window frame is then
outlined (as with locate 0 above).

The primitive is used for text entry from the keyboard. The user interacts by pointing in the local
window (cf. the locate primitive), and is then invited to enter the text in a small dialog, prompted by
string. At normal closure of the dialog, the entered text is returned.

Examples: Comments:
keyin "Please state your password” Invisible pointing area
keyin "why?" frame Window frame is shown
|key string |

where the characters in the string identify keys on the keyboard; system keys can not be specified.

Not shown on presentation.

On pointing (the user presses one of the keys in string), the corresponding key character is returned.

Examples: Comments:
key "Abc" Enable keys 'A', 'b', and 'c'
key " " Enable space bar

|poster id name |

where id is a positive integer.

Not shown on presentation. This primitive interacts with the application through posting, rather than
with the user.

On pointing (the application posts an event with the same id), name is returned.

Examples: Comments:
poster 21 beata Enable postings identified by 21; “beata” handles the response.

Remarks: The interactive property is similar to that of the menu primitive. The primitive is especially
useful if name refers to a subpicture.

3.3.3 Geometric Parameters

Geometric parameters are described in terms of their general effect on the subpicture they are properties of,
and in particular their effect on primitives. Their propagation is also defined (cf. Section 3.2.1). Each
parameter is associated with a default value, which the Model propagates to the root subpicture when the
Presentation or Correlation phase begins (Section 2.4).

l[pos point |

Effect: The subpicture is shifted to the specified position, relative to its parent. Thus point becomes the
local origin.

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 17

Default: 0 (i.e. no shift).

Affected primitives: All except key and poster.

Examples: Comments:
pos 4 Shift right 4 units
pos 43j-5.1 Shift right 4 and down 5.1 units

lorient dir |

where dir is a non-zero point whose magnitude is ignored, or a real number followed by the letter d for
degrees.

Effect: The subpicture is oriented (rotated) in the specified direction, relative to its parent. Thus the
vector from the local origin to dir defines the local x-axis.

Default: 1 (i.e. no rotation).

Affected primitives: figure, box, circle; other primitives only as to their positioning. Thus
texts, images, and arrays remain parallel to the canvas. However, the text2 and image2 primitives
(Section 3.4.3) can be oriented.

Examples: Comments:

orient 47j4 Turn 45° anti-clockwise
orient 23j23 idem

orient 45d idem

orient 1.732j1 Turn 30° anti-clockwise
orient 0j-1 Turn 90° clockwise
orient -1 Turn 180°

Remarks: An extension might allow array to be rotated.

|scale factor |

where factor is a point. If the y component is omitted, the x component is assumed (isometric scaling).

Effect: The subpicture is scaled by the specified factor, relative to its parent. The two components of
factor individually scale x and y. If a component is negative, the subpicture is mirrored in the opposite
axis.

Default: 1j1 (i.e. no scaling).

Affected primitives: As for orient.

Examples: Comments:
scale 4 Magnify isometrically 4 times
scale 4j4 idem
scale 4j2.5 Magnify anisometrically
scale 0.5 Reduce to half size
scale 1j-1 Mirror in x-axis
scale -1j-1 Mirror in both axes (i.e. mirror in the origin)
scale 130 Project onto x-axis (i.e. infinitely thin in y)
|skew dir |

where diris a point xjy. Meaningful values for the components are in the range [-1,1].

Effect: The subpicture is skewed (distorted) by dir, relative to its parent. A positive x skews the
subpicture to the right, negative to the left. Similarly, y skews the subpicture upwards or downwards.

18 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

Default: 0 (i.e. no skewing).

Affected primitives: As for orient.

Examples: Comments:

skew 0.4 Skew right by 40%

skew -0.4 idem, but left

skew -1 Skew all the way to the left
skew 0.5j0.5 Skew both right and upwards

lwindow vertex1 vertex2

where the values are points; vertex2 is optional.

Effect: Clips the subpicture to the specified rectangular window frame. The frame is defined by the
two vertices of either diagonal, expressed in the local system; if the second vertex is omitted, the
negative of the first one is used (making the window symmetric around the origin). A window may be
scaled, but only its centre is rotated by the orient parameter. The frame therefore always remains
parallel to the canvas. The window frame is not explicitly displayed (cf. the locate primitive; Sect.
3.3.2). The parameter propagates under set intersection: the window propagated from a parent
subpicture can not be expanded, only reduced.

Default: Infinity (i.e. no clipping).

Affected primitives: All; key and poster are handled as if positioned at the local origin.

Examples: Comments:

window 4j4 163j16 Place window in 1st quadrant

window 16516 4j4 idem

window 4516 16j4 idem

window 43j4 Place window symmetrically around origin
window -4j-4 474 idem

window O Make subpicture invisible

3.3.4 Cosmetic Parameters

Cosmetic parameters are described in the same terms as their geometric counterparts (Sect. 3.3.3).

|colour colcode mode

where mode is an optional mnemonic.

Effect: The subpicture is presented with the colour defined by colcode (Sect. 3.3.1). If mode is
omitted, the parameter is absolute. If mode is the mnemonic blend, the parameter is relative and
propagates by blending. This means that the effective value of each colour component is the average
of the specified and propagated values.

Default: white.

Affected primitives: All except key, poster, array, image.

Examples: Comments:
colour 255 255 0 Set colour yellow
colour yellow idem

colour darkgreen blend Combine colours by blending

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 19

[style type

where fype is a mnemonic.

Effect: Lines in the subpicture are presented using the specified type. Certain line-types cause the
vertices of figures to be unconnected and shown by marker symbols ("pin-point" figures). The
parameter is absolute.

Supported line-types:

type style

none line not shown

solid solid line

bold thick, solid line

dot dotted line

dash dashed line

dotdash dot-dashed line

point vertices shown as points
cross vertices shown as crosses
diamond vertices shown as diamonds

Default: solid.

Affected primitives: figure, circle, and the grid in locate.

Examples: Comments:

style dot Set dotted lines

style cross Set crosses as marker symbols
style bold Set thick lines

style none Set invisible lines

| font string size

where the optional size is a positive integer.

Effect: Text in the subpicture is presented using the font named string and the given size in pixels. If
string is empty, a "standard" font is assumed. The parameter is absolute.

Default: "" 20.

Affected primitives: text, menu.

Examples: Comments:

font “Arial” 14

font “Courier New” Use default font size 20
font “” Use standard font

|[render density colcode

where density is either an integer in the range [0, 100] or a mnemonic, and colcode is optional.

Effect: Sets the rendering pattern of the subpicture. If density is given as an integer, the interior of
primitives in the subpicture are surface-rendered to the specified density, expressed in percent,
providing more or less opaque surfaces. Zero density means no rendering, and 100 means solid
rendering ("area fill"). If density is given as a mnemonic, the subpicture is rendered with a pattern (see
below). The second value defines the colour of the rendering; if omitted, the effective colour is used.
The parameter is absolute.

Default: none.

20 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

Affected primitives: box, locate, figure, and circle. If the primitive is open and rendered
(even if by 0%), it is closed by the addition of a line segment.

Supported rendering patterns:

density pattern

none none

solid solid

cross cross-hatching

vert vertical stripes

horiz horizontal stripes

Examples: Comments:

render 100 Turn on all pixels, surface opaque
render solid idem

render none No rendering

render 0 idem, in addition the primitive is closed if needed (see above)
render 50 Set half transparent

render 50 pink idem with rendering colour
render cross pink Pink rendering with cross-hatches

3.3.5 Dynamic Parameters

Dynamic parameters are described in the same terms as the previous parameters. They are absolute and
(except for drag) affect all primitives.

|[state name |

Effect: The state of the subpicture is set to name, which must not be the name of £. The parameter
serves to control vis and det parameters in child subpictures as described below.

Apart from on and off, state names are invented by the programmer. They may coincide with
subpicture names without conflict.

Default: on.

Examples: Comments:

state Adam Switch state to Adam
state on Switch to the default state

lvis name ... |

Effect: The subpicture is visible only if the specified list contains either the effective state name or the
name on. If it does not, the subpicture is by-passed during both Presentation and Correlation phases.

Default: Empty name list.

Examples: Comments:

vis Adam Visible only in state Adam
vis Adam Eve urgh Visible in either of these states
vis on Visible in all states

vis off Invisible

Remarks: If the vis parameter is specified, the subpicture may be switched on by using the default
state on, and off by any state that is not used elsewhere (e.g. of £).

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 21

ldet name ... |

Effect: The subpicture is detectable through pointing only if visible, and if the specified list contains
either the effective state name or the name on. If this is not the case, the subpicture is by-passed
during the Correlation phase.

Default: Empty name list.

Examples: Comments:
det Eve Detectable only in state Eve
det off Undetectable

|drag mode name

where mode is a mnemonic (see below), and the name is optional.

Effect: Depending on mode, detectable primitives in the subpicture may be dragged with the mouse.
Only primitives in the subpicture, not in its descendants are dragged. During dragging, the primitives
are displayed without surface rendering.

The mode determines which geometric parameter in the subpicture is dragged:

mode Dragging

none nothing is dragged

pos the position is dragged
scale the scale is dragged
xscale idem, but in x only
yscale idem, but in y only
orient the orientation is dragged

The user drags a subpicture by pointing at it with the left mouse-button, then moving the mouse to a
new location before releasing the button. This event contributes two detect elements to the Response
Queue (see the introduction to 3.3.2):

1. The name (default is the name drag).

2. The change in the geometric parameter indicated by mode, expressed in the local system:
* pos: the vectorial displacement.
* scale, xscale,or yscale: the rectangular scale change.
* orient: the angular change, expressed as a direction vector.

Affected primitives: circle, figure, box.

Default: none.

Examples: Comments:
drag pos mydrag Position dragged and mydrag handles the result
drag xscale Scale dragged in x-direction and drag handles the result

Remarks: DIPRO does not update the geometric parameter of the subpicture at the end of dragging.
The response associated with name may, however, achieve this by combining the second detect
element with the local parameter (cf. Section 2.6).

3.3.6 Links

|Llink name ... |

Effect: The subpicture is linked to the subpictures named in the list, making the latter children of the
former. An undefined subpicture in the name list is linked but treated as empty.

22 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

Examples: Comments:
link urgh Link to subpicture urgh
link Oscar Beata Link to two subpictures

|[name name

Effect: The subpicture is renamed to name, provided the name is free. All links to the subpicture are
updated to reflect the name change.

Examples: Comments:
name Eve Rename subpicture to Eve

3.3.7 Additional Operations

The syntax is extended beyond Section 3.3.1 by a few additional operations on subpictures. The statement
syntax then becomes:

name ope, ...;

where oper, beside being a property, may be either of:

unlink nameft Remove a link to subpicture namef, if any, in subpicture name
clear Remove all properties (except name) from subpicture name
print Print all properties of subpicture name to a log file

copy namefl typename Copy property typename from subpicture name1 to subpicture name

copy namef Copy all properties (except name) from subpicture name? to
subpicture name

Examples: Comments:

oscar unlink Beata; Remove the link to Beata from subpicture oscar
oscar print, clear; Print all properties of subpicture oscar, then remove them
oscar copy Beata; Copy the properties of subpicture Beata into oscar

3.4 An Experimental 3D Subset

The following set of three-dimensional primitives and parameters has been used in DIPRO implementations
to demonstrate various 3D techniques (wire-frame modelling, generalised polytopes, spline curves, 3D
rotation, perspective, stereo). Basically wire-frame objects are provided, but there is limited support for
hidden-surface cueing.

The device coordinate system is a proper extension of the 2D system described in the previous section. As
you look at the canvas on the screen, by default the x-axis is towards the right, the y-axis upwards, and the z-
axis towards you. The canvas forms the xy-plane. But the 3D position parameter will shift the coordinate
system, and the 3D orientation parameter will turn it in any other direction.

Most 2D parameters and primitives are extended to 3D by the addition of a z component to each coordinate,
using a pseudo-quaternion form. Thus the notation:

253k4

represents the 3D coordinate <x,y,z> = <2,3,4>. Unless stated otherwise, the 2D form 233 is handled as an
abbreviation of 2j3k0, and therefore specifies a coordinate in the local xy-plane. The syntactic token point
now denotes either, and lists of points may contain any mix of 2D and 3D points.

On presentation and correlation, all primitives are projected onto the canvas (optionally under perspective),
and clipped by the effective 2D window.

K. Soop

A Model for Picture Structuring in Man-Machine Dialogs

3.4.1 Extensions to 2D Primitives

23

|£igure pointlist / ...

The 3D form is upwards compatible with the 2D form, differing only in that points may be 3D.

Examples:

figure 3j4k5

figure 3j4k5

figure 03j0k5

-334k5 759

figure 0 1 / 0 0j1

figure 0 1 / 0 031 / 0 030kl

Comments:

3-vertex 3D polygon
Single 3D dot

-3j4k5 7j9k5 03j0k5 Triangle at height 5

The xy coordinate axes
The three coordinate axes

|box point . ..

The 3D form is upwards compatible with the 2D form, and differs only in that boxes may be 3D.
Rendering and interaction follow the same rules as described for the new 3D primitives (Section

3.4.2). If the z-component of a point is omitted, the y-component is assumed.

Examples:

box 3j4k5
box 57j5k5
box 535
box 5

box 33j4k0
box 0j4k3

box 3j4k6 6j8k12
box 3j4k0 6j8k12

Comments:

Box with a vertex in <3, 4, 5>
Cube of size 10

idem

idem

Flat box (rectangle) in xy—plane
idem but in yz-plane

Two concentric boxes

One 2D and one 3D box

lcircle point...

The 3D form is upwards compatible with the 2D form, and differs only in that the ending point may
specify a z-component. If this component is non-zero, the primitive presents a helix or a helical arc.
Helices may be tiled (see Sect. 3.4.5).

Examples:

circle 23j0k5

circle 23j0k5 4j0k-5
circle 10j10k5

Comments:

Helix of radius 2 and height 5

(sine curve, if presented with orient 0j1 03j1)
Helices of radii 2 and 4

Helical arc extending 45 degrees

text point string
menu point string
image point string

The 3D forms differ from the 2D forms only in a possible 3D position.

Examples:
text 3j4k5 "Urgh"
text 3j4 "Urgh"

"Blurgh"

Comments:

One-row text with 'U' at <3, 4, 5>
Two rows at <3, 4, 0>

24 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

3.4.2 3D Primitives

The following family of three primitives provides variations of these familiar objects: prism, cylinder,
pyramid, cone, octahedron, and sphere.

General specifications:

1. The primitives are all presented as a set of regular n-gonal faces, parallel to the local xy-plane, centred
on the local zaxis, and symmetrically placed around the local origin. The faces are oriented so that
one vertex projects onto the positive x-axis. By default, the primitive has two faces (if a pyramid, one
reduces to the apex), but you may interpolate m additional faces. The non-negative integers n and m
are given as optional values.

2. The mandatory value size specifies the size of the object. It is a point, rjz, where ris the radius of a
circle in which one of the faces, called the base face, is inscribed, and where zis the half-height.

3. Longitudinal edges, connecting the face vertices, are shown but not detectable.
4. Rendering affects only the faces of the object, and line style only the longitudinal edges.

5. The user may interact by pointing inside one or more of the faces. On pointing, a list of 0-based
indices is returned. Each index identifies a detected face, counting from the bottom (lowest z in the
local system).

lprism size n m |

Presented as a straight prism. The two end faces have one vertex at <r,0,z> and <r,0,-2>,
respectively.

m equally spaced faces are inserted between the end faces of the prism. If you omit nand m, 3 0 are
assumed, i.e. the prism is triangular.

Examples: Comments:

prism 10j8 5 Pentagonal prism (height 16)

prism 10j-8 5 idem

prism 1038 5 4 idem, but with 4 additional faces
prism 1038 Triangular prism

prism 10j7.07 4 Cube

prism 103j8 33 Cylinder (almost)

prism 1038 2 Rectangular plane, confluent with z-axis
prism 1038 2 4 idem, but striped

prism 10j0 7 Heptagon, confluent with xy-plane

|pyram size n m |

Presented as a straight pyramid. The base face of the pyramid has one vertex at <r, 0, —z>, while the
apex is located at <0, 0, z>.

m equally spaced faces are inserted between the base and the apex of the pyramid. If you omit n and
m, 3 0 are assumed, i.e. a tetrahedron is presented.

Examples: Comments:

pyram 10j8 5 Pentagonal pyramid (height 16)
pyram 10j-8 5 idem, but pointing downwards
pyram 1038 5 3 idem, but with 3 additional faces
pyram 103j15 33 Cone (almost)

pyram 103j7.07 Regular tetrahedron

pyram 10j10 2 Triangle, confluent with z-axis

K. Soop

A Model for Picture Structuring in Man-Machine Dialogs

25

|basket size n. m

Presented as a "basket", resembling a wire-frame globe of radius r and half-height z. The basket
consists of m faces, the largest of which has one vertex at <r, 0, 0> if m is odd. The corresponding
vertex of the other faces is spaced between the poles of the globe, at equal distances along the

perimeter of an ellipse with half-axes rand z.

If you omit nand m, 4 1 are assumed, i.e. an octahedron is presented.

Examples:
basket

basket
basket
basket
basket
basket
basket
basket

10310 9 5
10310 25 19
1035 25 19
1050 25 1
1052 25 2
10510

10310 3
10315 25

Comments:

Basket of 5 nonagons and radius 10
Sphere (almost)

Ellipsoid (almost)

Flat wheel (almost)

Somewhat thicker wheel

Regular octahedron

Tetrahedral die

Top (almost double cone)

spline size tant tan2

where size is a real number and the last two values are optional 3D points.

Presented as a 3D cubic spline curve whose base-line lies on the local x—axis, centred at the origin.
The beginning point of the spline is at <-size, 0, 0> and the end point at <size, 0, 0>. The tangent at the
beginning point is given by tant, at the end point by fan2. If tan2 is omitted, fan1 with a negated y-
component is used, making the spline symmetric around the y-axis. If also tan7 is omitted, its default

is1j1.

The spline is affected by the render parameter, which also closes the primitive by showing the base-
line. The primitive is not affected by the style parameter, but it may be tiled (see the tile

parameter, sect. 3.4.5).

On pointing, the perimeter of the spline is detected, and the tangent at the detected point is returned as

a 3D vector.

Examples:
spline
spline
spline
spline
spline

3.4.3 Transformable text and image

The following two primitives are similar to text and image (Section 3.3.2), but are affected by all
geometric parameters, including 3D (performance penalty). Also their behaviour on interaction is analogous.

20
20
20
20
20

254 25-4

254

254k-1 3j4k4
4.536 5.5j-2
2.5j5 1.536

Comments:

2D symmetric spline of half-length 20

idem

3D spline (to be viewed with 3D orientation)
Spline with a loop

Spline crossing base line

text2 point string . ..

where the optional 2D pointis the vertex of a rectangle onto which the text is mapped, expressed in the

local system. The rectangle is centred at the local origin and parallel to the local axes.

Presented as the text primitive, but as the mapping is expressed in the local system, the text is
transformed by geometric parameters. However, if pointis omitted, the text extent is used for mapping,

which means that the primitive becomes insensitive to the scale parameter.

26 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

If the y component of point is omitted, the x-component is assumed. If point specifies a vertex other
than the top-right one, the text is mirrored accordingly.

Examples: Comments:

text2 40j3 "Please state the name:" Text mapped onto rectangle through <40,3>
text2 -10j3 "Please" Backwards text

text2 "Adam" "" "Eve" Paragraph mapped onto own extent

image2 point string

For mapping details this primitive is analogous to the text2 primitive (above). On presentation and
interaction it behaves as image.

Examples: Comments:

image2 10j10 "score" Image mapped onto square through <10,10> (size 20)
image2 10 "score" idem

image2 "score" Image mapped onto own extent

image2 10j-5 "score" Image mapped and shown upside-down

3.4.4 Extensions to 2D Parameters

These are all upwards compatible with the 2D form. The parameters affect primitives as described in Section
3.3, as well as all described in Sections 3.4.2-3.4.3.

l[pos point |

Effect: The subpicture is shifted to the specified position, relative to its parent. Thus point becomes the
local 3D origin.

Examples: Comments:

pos 47j5k6 Shift by <4, 5, 6>

pos 435 2D shift

pos 0j0k-18.2 Move backwards 18.2 units

|scale factor |

where factoris a 3D point. If the zcomponent is omitted, the y component is assumed.

Effect: The subpicture is scaled individually in x, y, and z by factor, relative to its parent. If a
component of factor is negative, the subpicture is mirrored in the opposite plane.

Examples: Comments:

scale 2 Double the size

scale 2j2k2 idem

scale 23j2 idem

scale 0.5j0.5k1 Reduce by half in xy-plane

scale 13j1k0 Project onto the xy-plane (i.e. flatten)
scale 1jlk-1 Mirror in xy-plane

|orient dir axis |

where dir is a 2D point, and axis is an optional 3D point. The magnitudes of both values are ignored
and both must be non-zero; dir may also be given in degrees (see Section 3.3.3).

Effect: The subpicture is oriented (rotated) in the direction given by dir, relative to its parent. It is
rotated around an axis extending from the local origin to the point axis. If axis is omitted, 0j0k1 (the
z-axis) is assumed, and the parameter reduces to its 2D form.

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 27

Examples: Comments:

orient 1.73231 1 Pivot 30 ° around x-axis

orient 30d 1 idem

orient 103j17 Pivot around z-axis

orient 10j17 0jlkl Pivot around axis in yzplane
orient 10j-17 0jlkl idem, but pivot in opposite direction
orient 10j17 0j-1k-1 Same effect

orient 0jl1 1 Provide side view

orient 03j1 0j1 Other side view

|skew dir1 dir2 |

where dir1 and the optional dir2 are 2D points, xjy. Meaningful values for the components are in the
range [-1,1].

Effect: The subpicture is skewed (distorted) in x and y by the given factors, relative to its parent. A
positive x skews the subpicture to the right, negative to the left. Similarly, y skews upwards or
downwards. Skewing by dir7 depends on the shape in xy, and skewing by dir2 depends only on z.
Thus, the second value can be used with the 3D primitives to produce oblique prisms, pyramids, cones,
etc.

If dir2 is omitted, O is assumed (i.e. no z-dependent skewing), and the parameter reduces to its 2D

form.

Examples: Comments:

skew 0 0.5 Skew towards xin z (for oblique prism, etc.)
skew 0 0.53j0.5 Skew both right and upwards

3.4.5 3D Parameters

lpersp dist sep |

where dist and the optional sep are real numbers.

Effect: This parameter provides perspective. On presentation of the subpicture the user is assumed to
view the centre of the canvas at the distance dist. The values are expressed in the canvas system (root
subpicture; see Section 3.2.3). A negative dist gives the illusion of the object being a hole in a solid
background.

If sep is non-zero, it is taken as half the user's eye separation, and two perspective projections are
shown, providing a stereo view. Your eyes are assumed to be at positions <sep, 0, dist> and <-sep, 0,
dist>, respectively, relative to the centre of the canvas. You may permute the stereo-pair with a
negative sep. The parameter is absolute.

Default: Infinity and 0 (i.e. no perspective and no stereo).

Affected primitives: all that use 3D. Points in the effective xy-plane are unaffected.

Examples: Comments:

persp 50 Perspective at 50 units from screen, see below
persp 50 5.3 idem with stereo

persp 5 Frog perspective

persp -50 Object appearing as a hole

persp 9999 No perspective (almost)

Suppose the root specified window 25725, leading to a canvas width of 50 units. Then the first two
examples assume a viewing distance equal to the canvas width.

28 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

[tile width

where width is a real number.

Effect: This parameter adds a tiled surface to the primitive so as to emphasize the spatial dimension.
The surface subtended by the primitive and a base-curve in the xy-plane is split into tiles of the given
width, expressed in the local system. The base-curve depends on the primitive (see below). If width is
0, the primitive is not tiled. Tiling is shown as longitudinal edges, affected by the style parameter.
The parameter is absolute.

Default: 0 (i.e. no tiling).

Affected primitives:
circle and figure: the base-curve is a projection of the primitive onto the xy-plane.
spline: the base-line is used as the base-curve.

Examples: Comments:
tile 2.3 Add 2.3 wide tiles

tile 0 No tiling

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 29

4. Application Building

Several analogies, as well as differences, between subprograms and subpictures were pointed out in the
introductory sections. In particular (Section 2.6), there is often a correspondence between the two types of
constructs in a well-structured application. This works in such a way that the code to be executed in response
to the user pointing at a subpicture S can often be gathered in a function R, which then becomes a
polymorphic method of the subpicture class. Such a function R will be called a response method. This
object-response connection forms the basis for a host of advanced application-building techniques.

It is, for example, highly productive for the designer to be able to specify the canonical form of S together
with the algorithmic code R. A sufficiently smart program editor may provide separate windows on the
screen for the two parts. Even higher productivity is reached if the editor is able to display the graphic
representation of S as it is developed and debugged. On saving (and possibly compilation), the parts are
automatically sent to the Dialog and Problem Processors respectively. An example:

Subpicture canonical form S Response method R
oscar oscar::response() {
colour blue, newtitle = readrec("bookfile.txt", RQ);
text "No Title", // update subpic
pos 3j5; oscar#text = newtitle;
}

Not all functions in an application will be response methods (an example could be the calculation of a mean
value); nor will all subpictures have a response. But on the whole it is possible, and indeed profitable, to
develop an application in such a way that all first-level program code is made up from response methods.
Remaining code is then invoked by the responses as second-level functions (readrec in the example).
Even the main function may be regarded as the response to a latent event, which is automatically posted to
the Dialog Processor at application start-up.

Section 2.5 emphasises the crucial role of the Response Queue for directing the flow of control from one
response method R1 to another R2. The polymorphic invocation of the methods is typically achieved by a
dispatching (fan-out) utility function based on the queue elements. When invoked, each R1 needs to know at
most the identity of the following R2 to be invoked. This information is provided by a built-in system
variable (RQ in the example; cf. Sect. 2.6), which, at the end of the Response Queue, also yields the pointing
data associated with the detected primitive instance (value of the text primitive in the example).

Another important technique, mentioned earlier, is state networking. It simplifies a complex dialog with
many interactive choices, which is why the example set (Section 3.3.5) incorporates dynamic parameters
specifically designed to assist in this area. Different states regulate different paths through the picture
structure, either in parallel (complementary picture parts), or in series (mutually exclusive picture parts). The
dialog states are also available (through the reference constructs suggested in Section 2.3) to the response
methods, where they may serve to regulate the logic.

With some experience, a designer using DIPRO together with a sophisticated editor can often build the
rudiments of a graphics application in a matter of minutes. The resulting code is immediately available for
quick on-line testing.

In summary, DIPRO provides a natural and comprehensive way to structure an interactive application
program, with a considerable boost in design productivity. This has been shown by many small to medium-
sized applications developed by the author and participants in his classes.

30 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

S. The Theory of DIPRO

This section describes the Dialog Processor Model in a formal way, using familiar concepts from set theory
and object-oriented design.

Central to the Model description is the notion of a picture. Ultimately a picture is something that can be
perceived by the human eye. But before a machine shows a picture to a human, it may store the information
representing the picture in different formats, depending on the level of abstraction. These representations
will here be called picture spaces.

Just as a program is made up of a number of subprograms or functions that are linked by calls, it is useful to
treat a picture as made up of subpictures, linked by relationships, such as "consists-of" (and its inverse
"contained-in"). The analogy, often evoked in graphics literature, stumbles when one compares some details
of the program or picture objects, but at a conceptual level it provides a symmetry that is, in fact, more than
accidental (Section 5.2.2).

Any theory that deals with structured pictures should state what a subpicture consists of, how it is identified
and referred to, how the structure is built, and the role of the subpicture in the total picture. There should
also be a discussion on how transformations and other parameters propagate, which in the present theory is
based on the notion of "effective value" (Section 5.1.3). Where most other models are lacking, however, is
in the very important area of event/response formalism with feedback from response to picture (Section 5.2).
This closes the loop presentation —interaction —response (Section 5.3).

Finally, a model may also state how it accommodates the related Application Programming Interface (API),
in particular how a subpicture is queried and updated. Here a mechanism based on object properties is
proposed (Section 5.1.5 and cf. Soop 1988), since this can easily be adapted to a variety of API protocols.

5.1 Picture Structure

5.1.1 Subpictures

Definition: A subpicture® is a named object, characterised by a number of properties, which fall into the
following broad classes:

. Primitives
. Parameters
. Links to other subpictures

Example: This example (expressed in some imaginary language) specifies the properties of a subpicture
Oscar:

subpic Oscar

colour red, // colour is a parameter

polyline (2 3) (0 10), // primitive

scale 2 3, // parameter

link Beata Fred, // Beata and Fred are other subpix
text (0 5) "URGH"; // primitive

Discussion:

1. Apart from links, the Model does not prescribe specific subpicture properties. These must be formally
specified by any implementation of the Model, e.g. by an international standard.

SAs is customary, the symbols ": , | C~"and "{}"stand for, respectively, "then", "and", "such that", "included in",
"not", and "set of", while ¥ means "for all" and 3 means "there exists".

6In the formal prose, bold-italics are used to define or introduce new terms, and italics refer to terms previously defined
or assumed to be known.

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 31

2. The term parameter is here used to embrace the notion of an attribute, e.g. colour or visibility, as well
as geometric transformations. As is well-known from structured graphics systems, these tend to have
similar behaviour.

3. Although the Model does not prescribe specific parameter properties, it would be difficult to imagine
an implementation without a window parameter. As discussed in Section 3.2.3, it can be defined to
include the properties of both a clipping window and a viewport.

4. The notion of a link property is used to span the picture space with a hierarchical structure. This is
preferred to saying that a subpicture "contains" another subpicture, since linking underlines some
important mechanisms, common in extant graphics systems: (1) a subpicture S can be included as
several instances in the total picture, and (2) modifying S then has a potential effect on all its
instances. This means that a link forms what is sometimes formally termed an instance connection
between objects. Note also that essentially "flat" implementations (such as GKS), are accommodated
simply by restricting the number of levels formed by the links.

5. Subpictures are similar to Minsky frames [Minsky 1975], where the main difference is that links are
properties rather than consequences of subpicture creation. The reason for this is greater homogeneity
in the Model; for example, the program can change the structure simply by updating a link property, in
the same way as it changes the colour of a subpicture from red to green.

Rule: A subpicture property is defined by its fype and its value. The type is a member of an implementation-
defined set. The fact that a subpicture S has a property of type T and value V is stated as an ordered triplet:

<s,T,V>

Rule: The domain of property values depends on the type, but always includes a null value. Composite
values (e.g. arrays) are allowed. In the following the expression <S, T, nulI> will be used interchangeably
with the expression "property T is missing in S".

Rule: A subpicture S has at most one property of any given type:
<s,T,V>, <S,T,W> : V=W

Definition: A picture space P is a (possibly empty) set of triplets:
P = {<S4,Ti,Vi>}, i=1l...n, nz0

where the triplets are defined as above.

Definition: A subpicture S is said to be in the picture space P, if it has at least one property in P:
In(S): 3IT,v#null | <S,T,Vv> CP

In the following, subpictures and their properties are implicitly discussed in the context of a given picture
space. For brevity the phrase "CP" is then omitted for triplets.

Discussion: In the following, definitions and rules for naming, storing, and loading picture spaces are
omitted for brevity. It is assumed that an application uses at most one picture space at a time.

Rule: An implementation of the Model shall provide a link property, here called 1ink, whose value is a
(possibly empty) set of subpicture names.

Discussion: The phrase "subpicture name" is here and in the following used loosely to designate any
implementation-defined way of referring to a subpicture. It may involve character strings, references,
indices, or pointers, just to list a few.

Definition: If a subpicture S has a link to another subpicture Z, S is said to be a parent of Z, and Z is said to
be a child of S. This is expressed by the predicates:

32

A Model for Picture Structuring in Man-Machine Dialogs K. Soop

Parent(S,Z): IM | <S,link,M>, ZCM
Child(Z,S): Parent(S,Z)

for some set M. By associativity, one may also speak about ancestors and descendants, through any number
of linkage levels.

Rule: A subpicture may have zero or more children, and zero or more parents.

Corollary: Since the value of the 1ink property is a set, all children of a subpicture must be distinct.

Definition: A root subpicture R is one without a parent:

Root(R): ¥S, ~Parent(S,R)

An implementation of the Model may restrict links to be present only in root subpictures in order to enforce
an essentially flat picture space.

Rule: No subpicture may be its own ancestor (or descendant). In other words, the picture space is spanned
by a re-entrant tree (or acyclic, directed graph) through the links.

Discussion:

1.

One might argue that a tree is too restrictive, and that a formal model should allow more general
structures, such as those provided by the Entity-Relationship theory. But extant systems used in
production graphics are almost invariably either flat or hierarchical. In my opinion, generalising into
arbitrary linkages would risk making the Model virtually useless by omitting some very powerful
mechanisms.

It is tempting to define a picture as a subpicture without a parent (including by associativity all
primitive instances that can be reached from the root), and similarly a primitive as a subpicture without
a child. None of this is needed for the theory, however.

Moreover, one may note that the latter point is not wholly consistent. If one wants to integrate
primitives into the picture space, they should not be defined as subpictures without a structure, but as
subpictures whose inner structure is given by the graphics system, and cannot be manipulated by the
programmer (the mini-structure of Soop [1982]). This is analogous to primitive functions (e.g. "+") in
programming. A primitive property can then be regarded as a link to the primitive subpicture, and the
primitives will form the true leaves of the picture space (cf. Fig. 2).

A picture space may contain more than one root subpicture, since there may be fragments of trees
lying around, which are temporarily unlinked and ignored by the Dialog Processor. Also, the
application may maintain a number of trees (forest), from which it selects one to present a picture.

This Model only provides one class of objects that can be named and referenced, namely subpictures.
Links cannot be named, nor can individual primitives or parameters in a subpicture. Note, however,
that the phrase "subpicture S" in the formalism denotes either a reference to the object or to its name
S, depending on the context. The Model does not specify how the association between a subpicture
and its name is achieved; one possible such mechanism might be a specific name parameter (cf.
Sections 3.3.5, 6.3.2).

Being an object property ("has-a" relationship) is straightforward for a parameter (such as colour),
but perhaps less obvious for a primitive. But one can argue that a primitive, say polyline, expresses
a dual property of its subpicture, namely to (a) display a set of straight lines, (b) allow the user to
interact by pointing at these lines.

Definition: A path H is an (ordered) list of at least one subpicture name, such that each name (except the
last) denotes a parent of the next:

H = <S1>,0r
H = <S1, S2, ..., Sp> | Parent(Si,Si+1), i<n, n>1

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 33

Definition: Each distinct path, whose first and last elements denote two subpictures R, S, represents one
instance of S with respect to R. If S has a primitive property of type T, the path also represents an instance
of the primitive T with respect to R. This may be expressed by the predicate Tnst:

Inst(S,R) : 3dH | S = R, Sp = S
Inst(T,R) : 3S,V#null | Inst(S,R), <S,T,V>

where H is defined as above.

5.1.2 Primitive Properties

Definition: Only primitives have a direct visual effect on presentation, in the sense that a subpicture without
a primitive, either in itself or in any of its descendants, can never be visible.

Discussion: The reverse does not hold, of course, in practical cases. A subpicture with primitive properties
need not be visible; for example, its visibility parameter may be of £, the primitives may be clipped
away by the window parameter, the colour may be the background, or the 1inewidth zero.

Rule: A primitive property is characterised by the following sub-properties:

1. Domain of its value
2. Geometric shape
3. Interactive properties

An implementation of the Model shall specify these for all its primitive fypes.
Discussion:

1. As regards sub-property 1, API details are, of course, not part of the Model, so the exact syntax for
specifying a value can not be prescribed. What an implementation must state is the domain and general
format of the corresponding value at the API level. For example, the value of a text primitive might
be specified as follows: "<coordinate><char-string>, where the coordinate is optional".

Note that an implementation may allow composite values in primitives of any type T. This is the way
to specify several T primitives (e.g. three polylines) in one subpicture.

2. Asregards sub-property 2, it is a well-known fact that primitives can mimic each other. For example, a
circle primitive can be mimicked by a polyline, or by the character "O". Naturally there is a
many-to-many correspondence between primitive types and shapes, and only an indication of the
intended shape is required in implementations. Thus, a circle primitive should produce something
that looks like a fair approximation of a circle. A precise definition of what is meant by "fair" is
meaningless. As is customary in standards work, the Model leaves it up to "marketing forces" to
decide whether someone wants to release an implementation where this primitive looks like a square.
— Also note that some primitives may have no geometric shape at all, i.e. nothing is presented.

3. Sub-property 3 should specify how one can detect the primitive through pointing (Section 5.2.1). It
includes criteria like "hit windows" and tolerances, and whether, for example, the interior of closed
shape is excluded from detection.

5.1.3 Parameter Properties

Definition: Parameters affect the visual or interactive behaviour of the subpicture. A parameter is either of:

Geometric: it affects the spatial appearance of the subpicture.
Cosmetic: it affects the style of the subpicture.
Dynamic: it affects the state of the subpicture.

The effect of a given parameter may vary with the primitive it is applied to and may even be absent for some
combinations.

34 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

Discussion: This taxonomy of parameters is perhaps debatable, and may in fact be superfluous in the
Model. The intent is merely to facilitate grouping in graphics-system documentation. It is easy to see that
colour, line type, and hidden-surface cueing are cosmetic in nature, and that rotation and perspective are
geometric. But a parameter like depth cueing, affecting, as it may, the geometry of the primitives could be a
borderline case. An example of a dynamic parameter is detectability.

Definition: With reference to a subpicture S and a parameter of type T, such that <S, T, V>:
. V is said to be the local value of T in S.

. The value actually used in presenting a given instance I of S (i.e. having a direct effect on its
primitives) is said to be the effective value E of T in S. This is written Eff(S,I,T,E).

. The effective value of T in the parent subpicture of S in I is called the inherited value of Tin S. If S
has no parent in I, the inherited value is the default value of T. The default is an implementation-
defined sub-property of T (see below).

Rule: All parameters propagate as follows. Consider an instance I of subpicture S and a parameter of type
T, such that <S, T, V>:

Subrule 1: If the local value V is null, the effective value E of T is the inherited value.
Subrule 2: If the local value V is not null, the effective value E of T is either of the following:
. Relative parameter T: E is V combined with the inherited value (see below).
. Absolute parameter T: E is V. (This may be handled as a special case of a

relative parameter.)

Subrule 3 : The default value of a relative parameter must be chosen as the identity element under
combination.

Let H be the path defining the instance I (Section 5.1.1). Subrules 1-2 can then be summarised by using the
predicate Eff:

Eff(S,I,T,c(e,V)): 1zCH | Parent(Z2,S), Eff(z,I,T,e)
Root(S): Eff(S,I,T,D)

where D is the default value of T, and c is the combination algorithm, such that:
c(e,null) = e

Subrule 3 can be summarised thus:
c(D,V) =V

Rule: A parameter property is characterised by the following sub-properties:

1. Domain of its value

2. Propagative sub-properties:
* relative or absolute
* default value

3. Effect on all primitive types
An implementation of the Model shall specify these for all its parameter fypes.

Example: As regards sub-property 3, an implementation of the Model might specify that circles are
unaffected by rectangular scaling (which would turn them into ellipses). A cellarray primitive may be
insensitive to a colour parameter, if it contains its own colour information.

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 35

Rule: An implementation of the Model shall specify a combination algorithm (Subrule 2 above) for each
relative parameter T. Apart from the local and inherited values of T, this algorithm may depend also on the
inherited or effective values of parameters of other types, but not on their local values.

Subrule: As this rule may engender infinite regression among the combination algorithms’, any
implementation must prescribe their exact dependence and order of evaluation (Section 5.1.5).

5.1.4 Notes on Subpicture Order

The definition of a subpicture as an object vested with properties leads to an explicit lack of specification
order. The following three program sequences, expressed in the syntax of Section 3.3.1 and setting some
properties of a subpicture beata, would therefore be equivalent:

beata colour blue, text "abc";
beata text "abc", colour blue;
beata text "abc"; /*...... */ beata colour blue;

As far as parameter properties (such as colour) go, it is easy to look at these as applicable to the
subpicture as a whole, and their place in the subpicture object should therefore be unimportant. The situation
for primitive and link properties is somewhat different, since their "order" may be revealed by over-painting
when the subpicture is presented. But if this effect is important, then the implementation should provide a
priority parameter, or use 3D, to sort out overlapping instances.

This is in sharp contrast to systems like PHIGS [1985], which has a complicated scheme involving line
numbers in structures. Such schemes, designed to facilitate updating, obscure the fundamental object
properties and complicate the API.

Apart from the specification order, there is also a processing order which is important in the definition of the
Dialog Processor (see the next section).

5.1.5 Methods

Definition: The following five methods are defined for subpicture objects. They are taxonomically divided
into editing, tracing, and responding methods:

Editing Tracing Responding
query method present method
set method correlate method response method

Rule: An implementation of the Model shall provide an API for the editing methods, where the implicit
argument is a subpicture S:

query: Formal argument: property-type
Returns the (local) value of the requested property of S.

set: Formal arguments: property-type, value
Replaces the (local) value of the requested property of S.

The value returned by guery or given to sef may be null.
Definition: An empty subpicture is one for which the query method yields the null value for all types.
Discussion:

1. The editing methods can be described by regarding the picture space as an associative memory
containing a set of <S, T, V> triplets (cf. Section 6). This emphasises the definition of an empty
subpicture. In such an implementation, subpictures need not have an existence property: any bona-fide

TExample: c1 (e ,V1), where e] depends on c2 (e2,v2), whose e2 depends on c7.

36 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

literal S is the name of a subpicture in the picture space, which can be non-empty only if it has
executed the ser method with a non-nul 1 value.

2. Note, that for editing purposes the subpicture name or reference constitutes the only mechanism for
addressing information in the picture space. If, in line with some systems, an implementation chooses
to use "tags" to address information inside a subpicture, it must add a new link level, on which tags are
defined as subpicture names in a reserved (possibly numeric) domain.

Definition: A tracing method produces all primitive instances (cf. 5.1.1) with respect to a subpicture S,
given as the implicit argument. For each primitive instance I, it produces:

1. The type T of the primitive in I.
2. The value W of of the primitive in I.

3. An ordered list of values {V4}, one per parameter property Ti. Each V; is the effective value of T in
Sn, Where Sy, is the subpicture designated by the last name in the path that represents I (Sect. 5.1.3).
In other words, each Vj results from propagating the inherited value of T4 through the path, from S to
primitive.

The precise meaning of "produce" is defined in the context of specific fracing methods below.

Rule: An implementation of the Model shall specify the order in which its parameter types are processed by
the fracing methods.

Discussion: Tracing, performing a tree traversal, can be described formally using a parameter stack. Let the
list {V4 } initially contain all inherited parameter values in S:

Trace(S) {
Stack {Vi};
For all parameter properties, taken in the implementation-dependent processing order,
*Replace the corresponding V4 by its effective value in S;
For all primitive properties,
If the corresponding value W in S is not null,
Produce <T, W, {V4 }>, where T is the primitive type;
For all child subpictures Z of S,
Trace(Z);
Unstack {Vi};

}

At the point marked * the algorithm may interrupt tracing S depending on various effective parameter
values. Examples are if a window has zero extent, or the visibility is of£. On interruption, the algorithm
skips to the line Unstack.

Of particular interest is fracing from a root subpicture, whose initial {Vi} consists of all default paramater
values. The complete picture, defined by the root, is then traversed (see Section 5.3).

Definition: With reference to the previous definition, present is a tracing method, where the pair <w, {V4 }>
produced for each primitive instance of type T is passed to the primitive generator of T (see Discussion).

Discussion:

1. While undefined by the model, a primitive generator is meant to be responsible for presenting the
primitive instance (examples: character generator, circle generator, line generator). It may be
implemented, for example, on a graphics card in the hardware. Subject to its capabilities, the generator
will achieve this by accessing the parameter values {Vi} and the primitive value W according to the
definition of the type T of the primitive.

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 37

2. An implementation may keep track of the parts (effective windows) of a picture that were modified
since the latest presentation, and thereby avoid tracing the entire picture space.

The correlate and response methods are described in the next section.

5.2 The Event/Response Formalism

When viewing a picture, the user of an interactive-graphics application is usually confronted with multiple
choices on how to proceed. Some of the choices may involve the manipulation of non-graphical devices (e.g.
a keyboard), and should therefore, in principle, be of no concern to the Model. On the other hand, one may
often handle non-graphic events as special cases of pointings, which may then be integrated into the
formalism.

It is intuitively clear that graphic interaction fits excellently with object-oriented principles: the user sends a
message to an object (subpicture) by pointing at it. It is therefore natural that the class of subpictures provide
a (polymorphic) method that has the ability to respond to the message. The response may cause an
immediate, visual feed-back to the user by updating the picture space, or it may perform some non-graphic
function. This is all in line with the behaviour of extant windowing systems.

The subpicture object is accordingly vested with both a syntactic (visual) and a semantic (responsive) role. A
programmer, when developing the application with a sufficiently smart editor, could then design the
graphics of the subpicture along with its associated response, and perhaps even test them jointly (cf. Section
4, and Soop [1986]).

In a structured picture environment it is useful to say that the user, when pointing at a presented primitive
instance, simultaneously points at all subpictures in the corresponding path. In the application, some or all of
these subpictures may be associated with responses, which typically need to be executed in path order.

In order to trigger the correct response, the graphics system must then know, for each event, which
subpictures the user pointed at (this is the familiar Pick input class in PHIGS). But converting the raw input
data from the pointing (usually a device coordinate) into a path is a costly process, demanding in general a
complete traversal of the picture space, and correlating the pointing with each primitive instance in turn.
Therefore many graphics systems leave the operation to the programmer, or at least leave him to decide
when to perform it. In my opinion this is not a satisfactory solution. The Model should include a complete
correlate and response mechanism, while providing an escape for those implementations that do not wish to
burden the system with the full capability.

5.2.1 Interactive Properties

Definition: After a picture has been presented (on an interactive device), the user may point at it. This action
causes an event in the graphics system, called pointing.

Rule: A pointing is identified by a coordinate® K, expressed in the device system. When the event occurs,
the graphics system stores its K in an event queue.

Example: A display screen uses pixels in the range [0, 511] in x and y to address the canvas. A pointing in
the middle of the canvas is identified by the coordinate K=<255,255>.

Discussion: To accommodate workstations with multiple monitors (or windows at the operating-system
level) and other interactive devices, the implementation may introduce an extra dimension in K that
identifies the device. In the above example, the pointing might then be identified by the coordinate
<0,255,255>, whereas another screen or canvas might yield <1,255,255>, and a ”pointing” at a function
keyboard <2,3,3>. A subpicture in the picture space may then be designed to represent a specific device,
simply by including a window parameter that "clips" away all other devices in the extra dimension.

8Here, as in the rest of this document, a coordinate is defined as an object with x and y (and possibly additional)
components, when Cartesian. Polar and other systems are accommodated in an analogous way.

38 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

Definition: The access-event function is defined as follows:

1. If there is an event on the event queue, remove it and return it;
2. Otherwise, wait until an event arrives, then do (1).

Discussion: The Model is open for events originating from sources other than user pointings, provided they
can be described by coordinates in the appropriate range. This mechanism allows timers, sensors, and other
sources to emulate user pointings, potentially animating the picture.

Definition: By an operation called posting the application program may put a pointing on the event queue.

Rule: An implementation of the Model shall provide an API for the posting operation. Its argument is a
coordinate K, expressed in the same range as a pointing.

Definition: The interactive properties (Section 5.1.2) of a primitive of fype T determine whether or not a
given pointing detects a given instance of T. If it does, the pointing is termed a hit.

Discussion:

1. The precise definition of what is meant by detecting is not required by the Model. The design of a
particular primitive may implement any scheme that includes hit windows, tolerances, and other
criteria. For example, you may provide a circle primitive that can only be detected on the periphery,
while another one is detectable in its interior. Note that even if otherwise identical, they are different
primitives and must be given different property types (say, circlel and circle2) in the
implementation of the Model.

2. An implementation may define a dynamic parameter (e.g. detectability) that disables or enables
hits in the subpicture.

Definition: With respect to a hit, a detect element is a value that identifies the part of a primitive that was
detected. The value may be composite (e.g. an array). The domain and format of detect elements is an
interactive property of the primitive type.

Rule: For each primitive type, an implementation of the Model shall provide a correlation algorithm,
which, given:

1. The value W of the primitive.
2. Avaluelist {Vi} corresponding to all parameter properties.
3. A pointing coordinate K.

produces either a detect element or null (no-hit case).

Example: An implementation may define a polyline primitive with an integer defect element, being the
index of the line segment that was pointed at. Alternatively, the detect element could be an array of indices,
to account for the eventuality that the user points at the crossing of several segments.

Definition: A hit path D with respect to a hit with pointing X is a path that represents a primitive instance I
with respect to a root subpicture R, detected by K, augmented by the detect element d of the hit. In other
words, the hit path is a list, headed by R and ending with d:

D(R,K) = <R,S1,S2, ...,Spn,d>, n20 | Inst(Sp,R)

An element (R, Si, or d) of a hit path is called a hit element.

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 39

Example: A pointing may give rise to the hit path:

Hit element Comment

Pic55 root subpicture

Canvas drawing window

Boat object being drawn

5 polyline segment #5 was pointed at

If two line segments were detected, then the last hit element might be a pair of integers.

Definition: With respect to a hit, all subpictures designated by elements in the corresponding hit path
(including the detect element d), are said to be detected by the pointing.

Definition: A hit set {D(R,K)} is the set of all hit paths with respect to a root subpicture R and a given
pointing K. A hit set may be empty.

Definition: With reference to tracing in Section 5.1.5, correlate is a tracing method, where the pair
<W, {Vi}> produced for each primitive instance of type T is passed, together with a pointing K, to the
correlation algorithm of T. If the implicit argument is a roor subpicture R, the result is the hit set
{D(R,K)}.

Discussion: The primitive interactive property is a powerful concept that can be used to integrate the
various input classes of extant standards into the Model. For example, a Choice device can be described in
terms of a primitive that yields an integer (e.g. a row index in a menu) as a detect element. A Locator device
can be represented by a locator primitive that is invisible on presentation, but covers the local window
with "virtual pixels" that can be individually detected by pointing. It then returns the pointing coordinate
(pixel address), but transformed to the local system, as a detect element.

Furthermore, an implementation of the Model that does not support “’pick input”, may define all primitives,
except locator, with a zero hit window, hence essentially non-detectable. The application viewport then
consists of a single, detectable locator primitive. In this way, pointings will yield only coordinate values,
and the correlate method becomes trivial.

5.2.2 Response Methods

Definition: A subpicture may optionally implement a polymorphic method, response. The default (base-
class) method performs nothing.

Rule: The response method has one formal argument, which is a hir element.

Discussion: A response method is normally implemented as a piece of application code, but may also be
part of the Operating or Windowing System. It typically uses the editing methods to modify the picture
space between events, but may also perform any other application-related task.

Definition: The respond-event function invokes all response methods associated with the elements of a hit
set B. It may be described formally as follows:

respond-event(B) {
for each hit path D in B,
for each element E of D in path order,
if E is the name of a subpicture S {
let Enext be the next element in D if any, else null;
invoke the response method of S with Epext as argument;} }

Rule: An implementation of the Model shall provide a respond-event function and its related API. The
argument is a hit set.

40 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

Discussion: Nothing prevents an empty subpicture S to implement the response method. The method will
be invoked if a primitive yields a defect element that happens to be identical to the name S. For example, a
menu primitive can be defined to yield the name Save when the user points at the choice "Save" in the
menu; this would cause the response of a dummy (empty) subpicture Save to be invoked, say, to save a file.

5.3 The Dialog
Definition: The dialog method consists of applying the following three functions in sequence:
Arguments Result
1. present R —
2. access-event — K
3. correlate R,K B

The method has a root subpicture R as implicit argument. This object then becomes the implicit argument of
present and correlate. The formal argument of correlate, the pointing K, is the result of access-event. Its
result, the hit set B, is the result of the dialog method.

Definition: The dialog cycle is the dialog method followed by the respond-event function. That is, it consists
of the above three functions, followed by:

Argument Result
4. respond-event B —

where the argument is the result of the dialog method.
Definition: A dialog consists of (indefinitely) repeating the dialog cycle.

Definition: A dialog processor is capable of executing the dialog method for a given root subpicture R. It
consists of the following parts, pertaining to a given set of subpicture property types:

. A set of generators and correlation algorithms for its primitives.
. A set of combination algorithms for its parameters.

. A picture space, with processors for the editing methods.

. Processors to perform the tracing methods.

. An event queue with a processor for the access-event function.

The picture space and event queue are initially empty.

Definition: The part of the application not in the picture space of the dialog processor resides in the
p PP p /4 8§ P

problem processor. This includes the "traditional" program, in particular, all response methods of the

application. In addition, the problem processor provides the respond-event function.

Discussion:

1. The terms "dialog processor" and "problem processor" are used here to denote any mechanism that
might be available to separate the functionality discussed. They may be implemented as (physical)
micro-processors, or as distinct tasks in a common processor, for example.

2. Several other components can be added to the dialog processor, e.g. metafile handlers and facilities to
load and save picture spaces. Only the parts that handle the basic dialog are listed here.

Definition: An edit request is produced when the problem processor invokes an editing method (Section
5.1.5). It consists of either of the following, where S denotes a subpicture, T a property type, and V a value
that may be null:

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 41

Method Request Result
query: the pair <S,T> V, such that <s, T, V>
set: the triplet <S,T,V> —

Rule: The dialog processor communicates with the problem processor through two channels. The traffic on
each channel is handled by queues:

Channel 1: A response queue Q1, containing the hit elements of a hit set. It is directed from the
dialog processor to the problem processor.

Channel 2: Two queues Q2 and 03, containing edit requests and their results, respectively. 02, the
request queue, is directed from the problem processor to the dialog processor, and 03,
the result queue, in the opposite sense.

In addition, Channel 1 is used to post events to the dialog processor.
Rule: While processing the dialog (see above), the processors are synchronised by the queues, as follows:

. When needed by the application logic, the problem processor (through the respond-event function)
picks hit elements from the latest event off Q1. If the queue is empty, the processor waits.

. The dialog processor simultaneously senses hit elements as they are picked off 0I1. When the problem
processor attempts to pick a hit element off the empty queue, the dialog processor executes the dialog
method. This puts a new hit set on Q1.

. The problem processor, in the course of processing its response methods, queries and updates the
picture space by putting edit requests on Q2. For each query request, it waits for the result on 03.

. The dialog processor services all edit requests as they arrive over 02. When the queue is empty, the
processor waits.

Discussion:

Initially, all queues are empty, so the dialog processor will be suspended (last point above). Soon edit
requests defining the initial picture will arrive from the problem processor, presumably as part of application
loading. At a certain time the problem processor will want to present its first picture to the user and accept
the user's interaction. It will then start trying to pick elements from the response queue (second point above),
which will trigger the dialog processor to execute its dialog method.

After presentation of the initial picture, the dialog processor will most likely hang again, waiting for the user
to interact (access-event function). The result of the interaction gives rise to new hit elements on the
response queue, which are then used by the problem processor. The dialog will continue in this fashion with
two synchronisation points per cycle: one to let the problem processor catch up, one to let the user catch up.

The dialog processor may thus be seen as an intermediary, intelligent service component between user and
application, providing a dynamic interface between the two.

42 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

6. A Possible Hardware Implementation

An implementation of DIPRO can take many forms. It is not difficult to emulate the model by programming
(cf. Sect. 3), but there are several aspects of the design that suggest an implementation in special hardware,
or at least in special microcode, for selected parts of the system. This special equipment would typically
reside in a PC or other intelligent workstation. It would complement, rather than replace, conventional
processors present in the workstation, and cooperate with these.

The following notes outline some aspects of a hardware DIPRO implementation.

6.1 Processor Layout

Summarising the main principles from the theory (Section 5), we are considering a two-processor split of
application execution into a Dialog Processor, and a conventional processor. For the latter, performing the
purely algorithmic and data management tasks of the application, we have used the term Problem Processor.

The communication between the processors takes place over two channels, each transmitting queues (Fig. 1;
Section 2.5). Each processor has a memory, but the task of the Dialog Processor being aimed at picture
processing, is best served by a specialised storage with its own type of access mechanism, described below.
The display functions themselves may be implemented on conventional hardware within the Dialog
Processor, such as a graphics processor card, where some tasks, e.g. clipping, hidden-surface cueing, and
tree traversal might be assisted by special microcode.

These components of the Dialog Processor are discussed (Fig. 3): the memory containing the picture space,
its access processor, the main picture-processing unit, and its memory. The graphical devices connected to
the workstation and their I/O ports are only mentioned in passing.

6.2 The Picture Space

Following the conceptual design developed in Section 2, the memory of the Dialog Processor stores a set of
binary relations, forming the Picture Space. In line with Symonds' formalism [1968], the Picture Space P is
a set of triplets:

P: {<R,S,V>}
where R is a property (relation), S a subpicture reference, and V the corresponding value?.

P embodies all pictorial information of one application, and its contents will in general vary as the
application session progresses, causing the picture (or pictures) displayed on the workstation to change. The
variation concerns not only the values V, but also the set of active subpictures S, so the number of triplets in
P will normally fluctuate substantially during the dialog.

For simplicity we may assume that there is only one graphics device used in the session, and that this device
is interactive. Actually, the DIPRO formalism supports multi-device workstations, which may also include
passive equipment (printers, plotters, etc., cf. 5.2.1).

As suggested in Section 2.3, one may regard each property R as a binary relation. Following the relational
notation, a given triplet <R,S,V> is present in P if and only if the Problem Processor has executed the
equivalent of the program statement:

R#S = V;
where V is not null, and "#" stands for the access operator (a form of relational join). V may be a list of
values (cf. examples in Section 3.3). On a program reference:

R#S

9 Please note that this section uses a different triplet order from Section 5.

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 43

the value (or list of values) V is returned, but nul I will be returned if no matching triplet is present in P.

P is thus addressable only by its contents; being a set it has no internal ordering. Consequently, P is a natural
candidate for an associative memory.

A convenient model of an associative memory is a cylindrical drum [Soop 1980] with one triplet stored
along each generatrix (see Fig. 3). A read/write head H, placed along one of the generatrices may then access
one triplet at a time. During one rotation of the drum, H will access the entire P; this one-turn operation is
defined as the basic instruction cycle of the associative machine. Because P has no "first triplet", the cycle
may begin anywhere on the drum, and there is no seek delay. Naturally, a physically revolving memory is
not suggested (there are several non-mechanical technologies that can be exploited), but the drum analogy is
helpful in visualising the basic concepts.

The drum is assumed capable of holding many more triplets than required by the application, and unused
triplets are set to a "vacant" value. The width of the drum depends on the representation of the entities R, S,
and V. This is explored in the next section, resulting in a typical value of 80 bits for the design example.

Problem
Processor

P = Picture Space (associative memory)
H = Read/Write Head

R1,R2,R3 = Registers

MPPU = Main Picture-Processing Unit
M = its Memory

Fig.3 Dialog Processor with Associative Memory

In general, the triplets belonging to a particular property R, or to a particular subpicture S, will not be
predictably grouped on the drum. After a short period of dialog, they are expected to be scattered around the
memory and interleaved with other triplets, including vacant ones, in a pseudo-random way.

6.3 The Memory Words

The triplets are implemented as fixed-length words on the drum surface, and each word is divided into at
least the three fields corresponding to the entities R, S, and V.

6.3.1 The R Field

As explored in Section 3.3, a general-purpose, medium-function, 2D system will provide fewer than 30
property types. With a suitable encoding, a 5-bit R field might suffice, but as one would like to
accommodate a few flags, discussed below, the width may be rounded to 8 bits. This field can
simultaneously be regarded as the op-code of the machine.

44 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

6.3.2 The s Field

An application on the level we are aiming at would rarely have more than 200 subpictures at one time,
which is probably a high number even for many advanced applications, such as in CAD. By suitable
encoding, the S field may therefore occupy 8-bit tokens that identify the subpictures. The encoding could
either take place in the Problem Processor, since the assigned subpicture names are only used at the API
level, or it could take place in the Dialog Processor. The latter is preferable, because part of a tokenising
mechanism, viz. binary relations, is already present.

We shall therefore assume that the subpicture name is represented by a special property, name, whose value
is a character string. Encoding then simply means assigning a vacant integer to each new subpicture as it
comes along (see Section 6.6.3); this integer is then the required token for the S field.

6.3.3 The v Field

As might be expected, the V field causes more difficulty. Not only are values of varying length, but some of
the values are ordered, as shown by earlier examples (e.g. figure and text in Section 3.3.2). With the
drum design and the updating operations described below, it is possible to exploit the inherent order of the
words in the storage. Despite the fact that this method compromises the no-order principle of the relational
approach, it will be tentatively chosen in this paper. One alternative is to provide an extra sort field per
word. Another involves breaking down long primitives into a number of unnamed subpictures, which,
however, complicates the updating protocols.

Assuming a single-precision floating-point representation, which is not unreasonable for medium-function
graphics, each 2D coordinate would need 64 bits (32 bits x and 32 bits y). Text primitives may then use the
same field to store 8 characters, assuming a standard code (e.g. ASCII) is used. Obviously a "null" code
must be reserved for filling purposes.

LR S| v

8 8 64 length (bits)

Fig. 4 Word Format

6.3.4 Accommodating the Property Types
The resulting design will have a total drum width of 80 bits (Fig. 4).

With reference to the example in Section 3.3, simple properties, like pos, locate, and style, are
accommodated in single triplets, using the V field for their numeric quantities. For example, colour and
render, which need to store three or four integers, may split the 64 bits into 16-bit groups to accommodate
colour codes and other data.

The window parameter carries two coordinates: the upper-right and the lower-left corner. Which triplet is
which is signalled by the flag bits in the R field. This same technique may then be applied to the more
complicated primitives.

The box and circle primitives are stored in multiple words, whose order is unimportant.

A figure primitive may define one or more line sets ("polylines"). Assuming one is always able to store
the triplets of the primitive physically in sequence (though perhaps not contiguously), there is only a need to
signal the beginning of each new line set (equivalent to the graphic "move" order of some implementations).
This is achieved by the same flag as used by window.

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 45

Text-type primitives (text, menu, etc.), are typically implemented 8 characters per word. The first word,
carrying the starting coordinate, is identified by the same flag as above.

The state names in vis and related parameters could be stored using the same chaining technique as for
text, but for simplicity (and performance) we assume the names are no longer than 8 characters; or, if they
are, they will be truncated. The same applies to subpicture names, stored with the name property. In this
way, vis and det are implemented in one or more triplets (the parameters may specify several state
names), whose order is unimportant.

link has subpicture references as its value part, and significant performance can be gained for this crucial
property by referencing through the tokens used by the S field. In this way, a link triplet may
accommodate up to eight links; more are stored in multiple words as required. The order between the links is
discussed in Section 5.1.4.

6.4 Relational Access Instructions

Only two basic instructions are defined for accessing the associative memory. They are intended to run on a
special micro-processor resident in the main picture-processing unit (MPPU), and are used by various
operations described below.

The read-write head H of the associative memory is connected to a register R1, whose contents are compared
for equality with a given word in a register R2 under a mask stored in a third register R3 (Fig. 3). The
contents of R2 may also be written (under the mask) to a word on the drum. Registers R2 and R3 are
connected to the memory M of the MPPU.

get

All words that match a given word under the mask are selected from P and stored in M, starting at a
given address. This instruction selects all words R1 for which (R1 & R3)=(R2 & R3), where "&"
stands for logical and.

replace

Words from M, starting at a given address, replace words in P under the mask. This instruction consists
of two steps. For each word R1 in P:

1. If R1 matches R2 under the mask, it is set to vacant. The selection is the same as for get.

2. If R1 is vacant (possibly from step 1), R2 is written, and the next word from M is loaded into
R2. This step is by-passed when no more words remain to be written.

replace thus ensures that after an update there will never remain any old words in P that match the
selection.

These instructions nominally take one machine cycle. If, for timing considerations, it is not possible to read
and write the same word as it is accessed, the design may have to incorporate separate read and write heads.
Also, it may be necessary to perform the two steps of replace in separate cycles.

The only logical error that can occur is that the drum gets full during replace. Full reset of P is achieved
by replace with a zero R2 and R3.

6.5 Tracing Operations

Tracing is the fundamental operation of the Dialog Processor. The objective is either picture presentation or
correlation, i.e. phases 1 and 3 of the Dialog Cycle (Sect. 5.3). It is a well-known task in structured graphics
(see e.g. Foley & Van Dam [1982]). Only a brief description is given here, adapted to DIPRO.

Tracing involves traversing the tree of the picture space, starting at a given root and visiting all descendant
subpictures in hierarchical order. It is a recursive operation, whose state is maintained by a special set of
registers, here jointly called the Graphic Status Word (GSW), in analogy with the PSW of many

46 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

conventional processors. The GSW contains the current effective value of all parameters (Sect. 5.1.3), in
addition to the local subpicture token. It is supported by a stack in the memory M (cf. Sect. 5.1.5) capable of
holding as many GSWs as there are levels in the structure (if a limit is set by technology, it should be at least
20). All coordinates in the GSW are expressed in the device system (i.e. the system used by the primitive
generators of the graphic device); they may therefore be integers, typically representing a pixel index.
Before a tracing operation starts, the GSW contains the parameter defaults (Section 5.1.3).

During tracing, the Dialog Processor calls on several important functions, some of which may involve
hardware or firmware. For example, when a primitive is encountered during Presentation, it must be sent to
a generator, which is often a hardware unit producing the only tangible result of tracing, viz. display.
However, if encountered during Correlation, the primitive is compared with the user's pointing, a function
that may be implemented in software. The tracing operations also use a clipper for windows, and a
transformer for coordinates, which may be implemented in microcode or in software. These units all need
access to parameters in the GSW and are included in the MPPU, where tracing takes place.

The relational triplets of a given subpicture must be traced in a certain order. First, it is necessary that all
parameters be traced and dealt with before any links or primitives, since the latter should be presented under
the effective position, colour, etc. Secondly, depending on the geometric transformations supported by the
implementation, it may be necessary to perform, e.g. positioning before scaling, and window clipping after
all other geometric parameters. This order is preserved by implementations of the Model (Section 5.1.5).

During tracing it may happen that the current subpicture is abandoned because of certain parameter
combinations. Typically this occurs on a non-matching visibility parameter, but it may also be caused by the
effective window disappearing, or for other reasons. To speed up the operation, it is therefore desirable to
put vis and allies among the first in execution order (i.e. assign a low op-code). In the following, some of
the subpicture properties from Section 3.3.3f will be used as examples.

6.5.1 Presentation Trace
Tracing a subpicture, identified by token S, for Presentation is achieved by the following algorithm:

1. get all words W of S, except 1ink and "long" primitives like figure and text. The instruction
involves a mask on the S field and part of the R field.

2. Sort W on the R field. Practically, this means that a sort index is generated on the addresses in M where
W is stored.

3. Process W in the sorted order. In particular:
* On vis, if none of the states matches the GSW state, abandon the tracing of S altogether.
* On name, stack the GSW, and place the S token in the GSW.

* On pos, orient and scale, combine the V field with the corresponding register in the GSW
and replace the result in the GSW. For pos this means passing it through the transformer.

* On window, transform the coordinates in the V fields, then clip them and replace the result in the
GSW. Then, if the window is of zero extent, abandon the tracing of S by branching to step 6.

* On colour, style, font, render, and state, replace the parameter in the GSW by the V
field.

* A "short" primitive (e.g. circle or box) is passed through the transformer and the clipper, then
sent to the hardware generator. The generator also needs effective parameters from the GSW, such as
line style, colour, and rendering.

* locate, by definition, uses the effective window from the GSW and needs no further
transformation or clipping. Subject to its value V, compute and send coordinates representing the
window and grid to the line generator.

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 47

* key and poster are ignored altogether.

4. get each "long" primitive of S in turn from P, overwriting the earlier W in M. The instruction involves
a mask on the S and R fields.

* The coordinate of a figure word is transformed, then clipped before being sent to the line
generator. In addition, contingent upon the buffering capability and intelligence of the latter, the
algorithm may have to maintain a current position which is updated by each word in a line set.

* text (and equivalent primitives) also makes use of a current position. The text generator uses the
effective font and colour parameters from the GSW.

5. get all 1ink words of S from P, overwriting the earlier W in M. The instruction involves a mask on
the S and R fields. Trace all subpictures referenced in the V field. During this time, the current W is
preserved.

6. Unstack the GSW, i.e. replace it from the top of the stack and remove the top.

Some subpictures may be very large due to long line sets or text strings. In an extreme case, the picture
consists of one very large line drawing. To avoid a correspondingly large buffer in M, the latter may be
defined as a wrap-around area, so that, racing conditions permitting, the "long" primitive is processed in
parallel with the get.

This algorithm is executed with the token of the root subpicture, representing the total presentation area of
the device, as the initial S. As the window of the root is processed, the clipping algorithm will sense the
infinite default window in the GSW and perform the mapping onto the physical system of the device or
canvas, by updating the pos and scale parameters in the GSW (Section 3.2.3). If required by the
hardware, the previous picture is erased and a new picture is initiated at this time, e.g. on a printer the next
page is loaded.

In principle, the order in which primitives and links are processed is irrelevant for presentation. Due to
device technology, however, the visual effect may depend on that order, especially if rendering is used (cf.
Section 5.1.4).

The stacking mechanism guarantees that the final contents of the GSW are identical to its initial contents, so
there is no need to refresh it before the next tracing operation begins.

6.5.2 Correlation Trace

Tracing for Correlation follows a similar algorithm. The main difference is that primitives are not sent to
generators, but are compared with the pointing of the current event. This event was accessed in the
intervening Access phase (Section 5.2.1). Each primitive type has in principle its own correlation algorithm.

If the algorithm finds that the pointing (expressed in the device coordinate system) lies on, or in some cases
in, the primitive (within a certain tolerance), it generates a hit. On a hit, the path consisting of all name
tokens in the GSW stack (including the current GSW itself) is copied over to a free area in the memory M. In
addition, the primitive itself (through its algorithm) generates an ultimate defect element for the path; this
may be a number, a coordinate, or a character string (cf. Sect. 3.3). At the end of tracing, all tokens in the
path are converted to names, and the resulting Response Queue is made available to the Problem Processor.
Because the user can point simultaneously at several primitive instances, the operation cannot just stop on
the first hit. Each hit generates its own path, which contributes to the Response Queue.

Other differences occur in the individual treatment of some parameters and primitives. Detectability, being
ignored during Presentation, is here treated as vis. Most cosmetic parameters may in principle be ignored
altogether. window terminates tracing of the current subpicture immediately if the pointing lies outside the
transformed window. This, in turn, allows locate to always generate a hit without further checking. key
is analogous, generating a hit if the pointing indicates that one of the specified keys was pressed.

48 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

Also here the sequence in which links are processed may be important for the result. Though undesirable in
a well-structured application, it cannot sometimes be helped that the response program depends on the order
of Response Queue elements. Therefore the tracing algorithm (step 5), should process the links in the order
they have been specified to the Dialog Processor.

6.6 Update and Reference Requests

The theory of DIPRO makes the subpicture the basic, in fact the only, unit of pictorial information that can
be addressed by name. The application designer is encouraged to create new subpictures, rather than trying
to cram structure into sets of primitives, and typical applications are expected to flood the Picture Space with
subpictures, some of which may even be generated automatically by the API.

Creation and destruction of subpictures are required to be not only easy and comfortable at the API level, but
fast to execute. In fact, there should be next to no extra overhead to pay, if a subpicture to be "updated" does
not yet exist in the Picture Space.

In this vein, the following operations, utilising the Request Queue, are defined (cf. Section 2.7):

6.6.1 Subpicture Update

The property name is encoded for the R field by a simple table look-up function. If it is invalid, an error is
returned on the request channel. The subpicture name of the request is tokenised, and if the name is not
present in P, a name word is added (see below).

Then the update is made through the replace instruction with the mask on the S and R fields. Note that all
triplets associated with the S and R must be replaced; it is not possible, for instance, to update only one
character in a text primitive, or to add only one coordinate to a line set. Since the operation takes one
machine cycle anyway, this is immaterial.

If no values are provided (the value part is null in the Request Queue), the operation sets all matching
triplets to vacant.

6.6.2 Subpicture Reference

The property name is converted as above. The subpicture name is tokenised, and if the name is not present in
P, null is returned on the request channel. Else the reference is made through the get instruction, and the
result (which may be nul1l) is returned.

6.6.3 Tokenisation and Verbalisation

To tokenise a subpicture name, get the name word in P that specifies the requested name with a mask on
the S and V fields. If the name is found, return the token in the corresponding S field. Otherwise, if an
updating operation was the caller, use replace to add a new name word with an unused token, and return
this token.

The opposite operation, verbalisation, consists of getting the name word with the given S.

6.6.4 Other Operations

Although not discussed in the earlier sections, there must be ways to manipulate complete subpictures
through the API. The basic operations are fetch, delete, and replace a subpicture. All are achieved by several
get and replace, with a mask on the S field. The subpicture name is tokenised as above, and the traffic
uses the request channel.

A post request, consisting of the coordinate of a simulated pointing, may arrive from the Problem Processor.
This event is enqueued (see below), and used in lieu of a user-generated event in animated presentations.

The Dialog Processor may be booted from the Problem Processor through a special request. The entire P is
then initiated to vacant words (through replace with a zero mask), the GSW is set to default parameter

K. Soop A Model for Picture Structuring in Man-Machine Dialogs 49

values (the name token in the GSW is set to zero), and all pending events are cleared. After this the Dialog
Cycle (see the following section) is started.

6.7 Dialog Cycle Execution

For completeness we recapitulate the way the Dialog Cycle is executed according to the Model developed in
the earlier chapters.

With reference to Sections 2.4 and 5.5, the main process running in the Dialog Processor executes the first
three phases of the Dialog Cycle. This process services three queues: the Response and Request Queues,
communicating with the Problem Processor, and an Event Queue.

Each user interaction as well as any other event, such as sensor input, time-out, or a post, is enqueued on the
Event Queue as a coordinate, expressed in the device system.

The interplay between the three queues serves to synchronise the Dialog and Problem Processors. The
Dialog Processor performs the following algorithm, where we retain the original numbering of the phases
(Section 2.4), but begin with the Response phase. This phase was earlier described in terms of the Problem
Processor, but we are now concerned with the corresponding task of the Dialog Processor:

4. Response

Pick requests off the Request Queue in FIFO order and service them, while monitoring the state of the
Response Queue. During this time new requests may arrive from the Problem Processor; these are
dequeued and serviced. At the same time, the Problem Processor will pick elements from the Response
Queue as part of its normal application processing. Each such pick is sensed by the Dialog Processor.
Now, when the Response Queue is empty, as soon as the Problem Processor attempts to pick the next
(non-existing) hit element, stop servicing the requests, and execute the next phase.

1. Presentation
Run the Presentation Trace. The user will now view the complete updated picture.
2. Access

If the Event Queue is empty, wait for an event to arrive. Dequeue the first event, and mark it as the
current event.

3. Correlation

Run the Correlation Trace using the current event. The resulting hit set is transmitted to the Problem
Processor via the Response Queue.

Then repeat from Phase 4.

As mentioned in Section 5.3, the Response Queue is initially empty and ignored by the Problem Processor,
so the Dialog Processor will be suspended in phase 4. During this time, update requests defining the initial
picture will arrive from the Problem Processor, presumably as part of application loading. At a certain time
the Problem Processor will want to present its first picture to the user and accept the user's interaction. It will
then start trying to pick elements from the Response Queue, which will trigger the Dialog Processor to go on
with the other phases.

After presentation, the Dialog Processor will most likely hang again in phase 2, waiting for the user to
interact. The dialog will continue in this fashion with two synchronisation points per cycle: one to let the
Problem Processor catch up, one to let the user catch up.

The Dialog Processor may thus be seen as an intermediary, intelligent service component between user and
application, providing a dynamic interface between the two.

50 A Model for Picture Structuring in Man-Machine Dialogs K. Soop

7. Conclusion

The model outlined in this paper has been implemented by the author and extensively used, resulting in a
dramatic boost in expressive power and productivity for application design. This comes in part from the
extreme simplicity and economy of concepts — the implemented API has fewer than 30 entry points (to be
compared with over 500 for PHIGS, for example). A second important reason is the object-oriented base for
the Model, leading to a formalised, yet natural coupling between picture and program.

References
Foley J.D. & A. Van Dam [1982]: Fundamentals of Interactive Computer Graphics — Addison-Wesley.
ISO [1990]: The Computer Graphics Reference Model — ISO/IEC JTC1/SC24/N512.

Minsky M. [1975]: A Framework for Representing Knowledge, The Psychology of Computer Vision (P. Winston, Ed.)
— McGraw-Hill Book Co., Inc., New York: 211.

Palermo F. [1979]: Some Database Requirements for Pictorial Applications (Lecture Notes in Computer Science 81) —
Springer: 555.

PHIGS [1985]: Programmer's Hierarchical Interactive Graphics Standard — ANSC X3H3/84-44.

Schauer U. [1983]: The Integrated Data Analysis and Management System (Lecture Notes in Computer Science 150)
— Springer: 30.

Sharman G. [1979]: A Picture Drawing System using a Binary Relational Database — Data Base Techniques for
Pictorial Applications, Springer: 425.

Soop K. [1980]: A Data Support System — IBM Nordic Lab, TR 18.228.
Soop K. [1982]: A Graphics Dialog Model — IBM Nordic Lab, TR 18.229.
Soop K. [1986]: Bringing Graphic Dialogs to APL — Proceedings of the APL86 Conference, Manchester: 96-102.

Soop K. [1988a]: APL Graphics and the Associative Machine — Proceedings of the APL88 Conference, Sydney: 306-
313.

Soop K. [1988b]: Picture Structuring in Man-Machine Dialogs — Proceedings of the SEAS AMS88 Conference,
Aalborg.

Soop K. [1989]: An APL Model of a Graphics Dialog Processor — IBM Nordic Lab, Sweden.
Soop K. [1992]: APL and the Graphics Programming Interface — APLCAM.

Symonds A. J. [1968]: Auxiliary-Storage Associative Data Structure for PL/I — IBM Systems Journal 7,3: 229.

